
R ou x Février 1979

cpsitcc-systcrTi sa

����������	������	���

���Mis � disposition par Jean-Daniel Nicoud
Mars 2024

LA PROGRAMMATION DU SMAKY6

1ère partie

1. Introduction

2. Système microprocesseur

2.1 Mémoire
2.2 Interfaces
2.3 Processeur

3. Programme

1. INTRODUCTION

L'o^ECTIF DE CE FASCICULE EST D'APPoRTER

Des ex. p ne at> b a/s simples sur la programmation

Des MICROPRO CESSEVRS J ET Plus PARTICULIEREMENT
DU SYSTEME A microprocesseur SMAKY •

Nous nous efforcerons d'utiliser les termes techniques français, en mention­
nant leurs équivalents anglais entre deux barres obliques.

2. SYSTEME MICROPROCESSEUR

Il faut bien distinguer un microprocesseur et un système à microprocesseur.
Le microprocesseur se réduit généralement à une unité arithmétique et de
contrôle; sa structure ne sera pas étudiée dans ce fascicule. Un système à
microprocesseur comporte, en plus du processeur, la mémoire et des interfaces
d'entrée/sortie, selon l'application visée.

����������	������	���

���

2.1 MEMOIRE

La mémoire est un ensemble de cases numérotées. Le numéro est appelé adresse
/address/ et le contenu est appelé mot, donnée,information, byte, code /data/.
Dans le SMAKY, le contenu est un mot binaire de 8 bits. C'est-à-dire qu'il
possède 8 sous-cases pouvant contenir chacune un 0 ou un 1.

Adresses---------- 1
215
216
217
218
219 ■
220
221
222
223

byte

bit

La mémoire contient le programme et les données; elle peut être à lecture et
écriture (mémoire vive) /ram: Random Access Memory/ ou à lecture seulement
(mémoire morte) /ROM: Read Only Memory/.

Le contenu d'une mémoire vive peut donc être constamment modifié. On l'utilisera,
par exemple, pour stocker des données. Lorsque l'alimentation est coupée, tout
le contenu est perdu.

Le contenu d'une mémoire morte ne peut être que lu. Il a quand même bien fallu
l'écrire une fois, mais ceci se fait sur un apnareil spécial appelé nroaramma-• • • I • • w

teur. Lorsque l'alimentation est coupée, le contenu est conservé.

2.2 INTERFACES

Les interfaces /interface/ permettent la commande des périphériques de dialogue
avec l'utilisateur (périphériques clavier et écran par exemple) ou avec un autre
système à microprocesseur (périphériques de transmission) ou encore avec une
mémoire de masse (cassette, unité de disques, etc.).

DlALoGVG
SM AK? S .

GP TRE

3

����������	������	���

���

A un périphérique correspondent une ou plusieurs adresses. Une seule adresse
: la donnée correspondante permet de savoir quellesuffit pour lire un clavier

touche est pressée.
L'écran du SMAKY6
comme une mémoire
nence sur l'écran • •ICI .

est particulier. En effet, pour le processeur, il réagit
vive normale, mais cette mémoire est visualisée en perma-
par un interface assez compliqué qui ne sera pas étudié

2.3 PROCESSEUR

Le processeur s'occupe de la gestion de la mémoire et des interfaces d'entrée/
sortie. C'est lui qui va lire la mémoire pour exécuter le programme qui s'y
trouve, qui va afficher des caractères sur l'écran, etc.

Pour faire cela, le processeur contient au moins trois registres:

- le compteur de programme /pc-. Program counter/ qui pointe l'adresse de la
position mémoire contenant l'instruction à exécuter

- le registre d'instructions /i: instruction Register/ qui mémorise l'instruc­
tion pendant son exécution

- le registre accumulateur /a-. Accumuiator/ qui est utilisé pour les transferts
et opérations arithmétiques.

Il y a en général d'autres registres dans le processeur, dont nous parlerons
par la suite.

Processeur

Le processeur, la mémoire et l'interface sont reliés par des lignes de
contrôle appelées bus /bus/.

On distingue en général le bus d'adresse /address bus/, qui transporte
les adresses mémoires et les adresses des périphériques, le bus de données
/data bus/, qui transporte les contenus des positions mémoire et registres
périphériques, et les lignes de contrôle /control bus/ qui synchronisent
les transferts.

4

����������	������	���

���

3 PROGRAMME

Le programme stocké en mémoire correspond à la succession d'ordres à donner
au processeur pour qu'il effectue correctement les transferts et opérations
entre ses registres, la mémoire et les périphériques. Un programme peut donc
s'écrire sous forme d'une suite de nombres binaires associés à des adresses.

Cette méthode de travail est très longue et comporte beaucoup de risques d'erreur.
C'est pourquoi, dans une première étape, nous n'écrirons ni us les nombres en
binaire, mais en octal. Les données seront aussi écrites en octal Cette trans­
formation correspond simplement à faire un passage de la base 2 (binaire) à la
base 8 (octal)

On remarque qu 'un nombre
octal ne contient pas de 8,
ni de 9.

Pour faire rapidement cette transformation, il
partie de la table entourée en gras.

suffit de se ranneler

5

����������	������	���

���

Exemple de transformation binaire -►octal: Exemple de transformation octal-*"binaire:

|7

|O|1 loi 'N 1111

d'où (27)O = (00010111). O u

d'où (01101011). = (153)

EXERCICE:

1) Combien vaut (252)$ en binaire ?

2) Combien vaut (370)o en binaire ?O
3) Combien vaut (10111000) en octal ?

4) Combien vaut (00101010) en octal ?

5) Combien font (27)O + (101) o en bianire ? O o
6) Combien font (00111001)2 + (130)$ en octal ?

8(lZZ) (9 Z(OOOLLOLO) (9 8(?S) (17

8(0Z?) (E ^(OOOLLLLL) (Z Z(OLOLOLOL) (l

:S3SN0d3d

6

����������	������	���

���

