
O

����������	������	���

���Mis � disposition par Jean-Daniel Nicoud
Mars 2024

Table

Wos
V* ** < 1 ■

1
W
1S
20
30
99

> 1

□ 17/04/84 Hardi 18:54:03 .
w

Coor(100,100)
Coor(300,140)
Coor(600,180)

: Scale(.l) : Rot(0) : 6osub Lobel_ARBALETE ■
: Scale(.lS) : Rot(Pi/6) : Gosub Label_ARBALETE
: Scole(.2) : Rot(-Pi/12) : Gosub Lobel_ARBALETE

End

Auto Clear Stock Refgo.Lobel Var
Goto Gosub Retur

Enter Saue
List Edit

mat 1ères

Renum Runj Stop
File Open Close
Print Input Line

Chapitre 1 GRAMMAIRE BASIC.. 1
S

1.1 Définitions et abréviations syntaxiaues..1
1.2 Exemples accomaagnés d’explications...1

1.2.1 L’élément CHIFFRE...1
1.2.2 L’élément NOMBRE.. 2
1.2.3 L’élément CARACTERE..2
1.2.4 La commande Auto..2

Chapitre 2 JEU de CARACTERES

Chapitre 3 ATOMES......................
3.1 Délimiteurs.................
3.2 Mots réservés.............
3.3 Variables......................
3.4 Labels Cétiauettes)
3.5 Constantes....................
3.6 Numéros de ligne.....

Chapitre 4 LIGNES BASIC, FORMAT, BLOC

Chapitre 5 QUELQUES PARAMETRES PARTICULIERS..4
5.1 Quelaues expressions du type.entier..4

����������	������	���

���

Chapitre 6 ORDRES et FONCTIONS, GENERALITES.. 5
6.1 Symboles spéciaux de programmât ion...5
6.2 Commandes de manipulations de programmes...5
6.3 Commandes de Listaaes... 6*

6.4 Exécution, dépannage de programme...6
6.5 Ordres généraux de programmation... •.................................... 6
6.6 Ordres d’assignations.. 7

_ _ •

6.7 Ordres divers...6
6.8 Ordres de programmât ion structurée............ ...6
6.9 Fonctions mathématiques..9
6.10 Fonctions caractères (“string”)... 9
6.11 Fonctions et "varsys” spéciales... 10
6.12 Ordres et Fonctions souris (MOUSE).. 10
6.13 Touches saéciales et soFtkeys... 10

Chapitre 7 NTREL... 11

Chaoitre 8 FICHIERS.. 11

Chapitre 9 GRAPHISME.. 13

Chapitre 10 MODULE GESDO...14

Chapitre 11 EXPRESSIONS... 15

Chapitre 12 OPERATEURS..15
12.1 Opérateurs unaires... 15
12.2 Opérateurs logiques... 15
12.3 Ooérateurs relationnels..15
12.4 Ooérateurs arithmétiques... 15
12.5 Opérateur "string”...16
12.6 Parenthèses...16
12.7 Schéma de précédence..16

Chapitre 13 CONSTANTES.. 16

Chapitre 14 VARIABLES--..17
14.1 Paramètres d’une VAR_FN.. 17
14.2 Paramètres d’un LABEL... •..17

Chapitre 15 EXEMPLES BASIC...18
15.1 Conjugaison d’un verbe... 18
15.2 Dessin d’un carré et d’une maison..19
15.3 Dessin d’un polygone..20
15.4 Lecture d’un Fichier... 20
15.5 Impression d’un Fichier.. 21

BASIC 6.65, St-Aubin le 19.4.84, J.M.Pardtte

����������	������	���

���

1 GRAMMAIRE BASIC

Cette grammaire définit la construction d’une commanae ou d’un programme BASIC en
décrivant c’naaue ordre, chacue type de donnée, chaque élément nécessaire à la
construction rigoureuse et seule acceptée d’un programme.
La présentation cui suit est un résumé comalet aui s’utilise avec une bonne dose de
réflexion loaiaue. Examinez les exemples détaillés et expliaués ci-dessous. *

1.1 Définitions et abréviations syntaxiques

métasymbole utilisé pour séoarer des choix exclusifs.

métasymboles utilisés pour isoler un élément ou un grouoe
d’éléments oui est optionnel.

métasymboles utilisés pour isoler
d’éléments aui peut se répéter.

un élément ou un grouoe

commentaire ou remaraue dans une définition (jusqu’à la fin
de la ligne et les lignes suivantes).

ELEMENT
ELEMENT-COMPOSE
GRAND-ELEMENT-COMPOSE

désigne un élément avec son schéma de construction
comme par exemple une expression numérique. Un élément est
toujours écrit en lettres majuscules. Le symbole - permet
de lier plusieurs mots (comme COMMANDE-DIRECTE) afin de
donner un sens plus explicite du fonctionnement de
1’élément.

ELEMENT* désigne un élément de donnée du type entier. Des ELEMENT*
sont par exemple:
- EXPR* une
- VAR* une
- CAR* une

expression Quelconque du type entier,
variable du type entier.
expression du type entier dont le nom

explique le sens de ’exoression à calculer
(dans ce cas, un caractère ascii).

Mot

comme ci-dessus mais pour le type réel.
comme ci-dessus mais pour le tyoe “string".
comme ci-dessus mais acccepte les 2 types entier et réel.

désigne un mot réservé BASIC, par exemple: Print, Sin, Mod.
Un mot réservé est toujours écrit avec la première lettre
en majuscule et les suivantes en minuscules.

désigne un symbole aui doit être écrit selon la présentation
demandée.

1.2 Exemples accompagnés d'explications

L’élément CHIFFRE

CHIFFRE 011’213141516171019 \X

l’élément CHIFFRE est Formé au choix de l’un des 10 chiFfres\de la base
décimale. Lorsaue l’élément CHIFFRE est demandé, il Faut "répondre" avec un aes*
caractères numériaues (0,1,2,3,...).

����������	������	���

���

1 GRAMMAIRE BASIC
1.2 Exemoles accompagnés d’explications

1.2.2 L’élément NOMBRE

NOMBRE CHIFFRE {CHIFFRE!

Dé Finit ion: l’élément NOMBRE est Formé d’un élément CHIFFRE suivi optionnellement
d’autres éléments CHIFFRE. L’élément NOMBRE appelle la définition de l’élément
CHIFFRE. Ainsi, avec cette construction, il est possible de générer un nombre Formé
d’un seul CHIFFRE (ex: le NOMBRE 3) ou de plusieurs (exemple: le NOMBRE 257).

1.2.3 L’élément CARACTERE

CARACTERE LETTRE I CHIFFRE I SPECIAL

DéFjnition: l’élément CARACTERE est Formé au choix oar l’un des 3 éléments LETTRE,
CHIFFRE ou SPECIAL. Chacun de ces 3 éléments appellent eux-même une nouvelle
définition d’élément. L’élément CARACTERE englobe presque tous les caractères
du clavier (exemples: la LETTRE A, le CHIFFRE 5, le caractère SPECIAL /).

1.2.4 La commande Auto

Auto Si ART_LIGNE7-, INC_LIGNE7- — pour le Fonctionnement de Auto, voir plus loin.

Définition: il y a 4 éléments cui sont de gauche à droite:
- Auto un mot réservé cui doit être écrit.
- START_LIGNE% une expression du type entier donnant le 1er numéro de ligne.
- , un symbole oui doit être écrit.
- INC^LIGME# une expression du type entier donnant l’incrément de chaque

nouvelle liane.
Les éléments START^LIGNE^ et INC_LIGNE% ont une construction identiaue à l’élément
EX?R% (expression du tyoe entier) mais avec des limites (<= 0 interdit).

ARACTERE LETTRE 1 CHIFFRE I SPECIAL

LETTRE AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ
alb’cldlelfiglhîiljlkllfmlnlolplqlrlsltlulvlwlxlyiz

CHIFFRE 0lll2’3l4t5!! 617181 S

SPECIA % î ! î # : $? © ! ’ I " I + I - I * I / I (I) I (!) I = I & I ? I

RETURN — la touche (RETURN), oui termine 1’introduction de chaque
liane de commande. Ce caractère n’est pas représenté
bien au’il soit nécessaire.

CAR-ASCII — une touche du clavier, n’importe quel code.

I DELIMITEUR
I MÜT_RESERVE
! VARIABLE
! LABEL
! C0NSTAN7E
! NUM LIGNE

— arithm. ou autre
— ex: Print, Next, Mod, Sin, ...
— ex: VITESSE
— ex: Label_CALCUL
— numérioue ou "strinq"
— numéro de liane

—

����������	������	���

���

ATOMES
Exemples accompagnés d’explications

NOM

NOMBRE

LETTRE {LETTREICHIFFRE! — suite de lettres et de chiffres.

CHIFFRE {CHIFFRE! — suite de chiffres.

3.1 DélImlteurs

DELIMITEUR

DELIMITEUR-SIMPLE

DELIMITEUR-SIMPLE I DELIMITEUR-COMPOSE

<l> 1 = 141: I ; I,I.I(I)

DELIMITEJ RECOMPOSE ** r (-" I } — I O

3.2 Mots réservés

MOT^RESERVE NOM
— mot réservé du language BASIC, ex: Print, Sin, Mod.

Ces mots ne sont pas utilisables pour des noms de
variables mais sont utilisables pour des noms de LABEL.

3.3 Variables

! VAR%
1 VAR!
I VAR$

— entière
— réelle (flottante)
— "string"

3.4 Labe1s Cé?t iquelles)

LABEL Label-NOM — le mot Label_ et un NOM
ex: Goto Label-BOUCLE

3.5 Constantes

CONSTANTE I CONST%
I CONST!
I CONSTS

— entière
— réelle (flottante)
— "string"

3.6 Numéros de ligne

NUM-LIGNE NOMBRE — 1 <= NUM-LIGNE (= 32767

FORMAT

COMMANDE I COMMANDE-DIRECTE
I COMMANDE-INDIRECTE

— exécution immédiate
— exécution différée

COMMANDE-DIRECTE

COMMANDE-INDIRECTE

ORDRES — au maximum 254 caractères

I COMM-IND-EFFACE — efface une ligne
I COMM-IND-INSERE-CHANGE — insère ou change une ligne

COMM-IND-EFFACE NUM-LIGNE

COMM-1ND-1NSE RE-CHANGE NUM^tlGNE I LABEL-DEF-IND C: ORDRES!
I — définit une ligne et un label,
I indentation impossible.
I [INDENT! ORDRES

— définit une liane, M 9

indentation oationnelle.

����������	������	���

���

I
1
1
I
1
1
I
I
I
1
I
I
I
I
1
I
I
I
1
I
1

LABEL_DEF_IND

BLOC

INDENT

ORDRES

RA\'GE_TEXTE

4 LIGNES BASIC, FORMAT, BLOC
1.2 Exemples accompagnés d’explications

LABEL C(PARAM_LABEL_DEF PARAM_LABEL_DEF>)]
— définit un label et déclare optionnellement des

paramètres pour une routine.

NUM_LIG\'E CINDENT] ORDRES
— un bloc est formé d’une ou plusieures lignes de

commandes indirectes.

— une suite de caractères (ESPACE)

ORDRE T: ORDRE} — une suite d’ordres BASIC.

— désigne une
ransê_texte

10
10..20
10..
. .99

FICHIERS

FICHIER_BAS$

FICHIER_CBAS$

CNUM_LIGNEILABEL] !.. CNUM_LIGNEI LABEL]3
partition du texte du programme BASIC,
aermet de construire:

la ligne 10 uniquement.
les lignes 10 à 20 y compris.
la ligne 10 et les suivantes jusau’à la
les lignes du début jusqu’à la ligne 99

Fin du texte,
comprise.

— une expression “string” désignant un Fichier auelconoue
(exemples: SPRINTER, STOCK.GESDO).

— une expression “string" désignant un Fichier BASIC.
L’extension ’.BAS’ est accolée automatiquement si
aucune extension n’est précisée (exemples: FORMULES ==>
FORMULES.BAS, ESSAI.BASO inchangé).

— comme ci-dessus mais désianant un Fichier BASIC
"compilé" avec l’extension ’.CBAS’.

5.1 Quelques expressions du type ent1er

C0L%

CAR#

INDEX*/.

CANAL

— un numéro ce colonne sur l’écran, de gauche à droite.
La colonne de gauche a toujours la valeur 0. La dernière
colonne de droite a une valeur oui dépend du générateur
de .caractères utilisé.

— un numéro de ligne sur l’écran, de haut en bas.
La ligne du haut a toujours la valeur 0. La dernière
ligne a une valeur oui dépend du générateur utilisé.

exorime uneI

— exorime

longueur.

la valeur d’un caractère dans le code ascii.

— exprime la valeur d’un index dans un "string",
caractère est pointé lorsque l’INDEX’/, vaut 1.

Le 1er

— exprime le numéro de canal d’un Fichier BASIC.
La valeur est comprise entre 0 et 7, 0 désignant toujours
l’écran et le clavier.

- 4 -

����������	������	���

���

& ORDRES et FONCTIONS, GENERALITES

MOTIONS GEMERAEITES

ORDRE

FONCTION

— un ordre avec sa construction sémantique,
ex: Print__

— une Fonction ou une "varsys" avec sa construction.
ex: Sin(EXPR’)

6.1 Symboles spéciaux de programmation

séparateur d’ordre dans un ligne,
remplace l’ordre Print.
remplace l’ordre Rem ou : Rem.

6.2 Commandes de manipulations de programmes

Audit I FICHIERS — copie l’écran depuis cette commande dans un Fichier.
I End — termine la copie d’écran.

Auto C STARTJ_IGNE%,LNC.LIGNE* 1

Bye
Clear
Copy FICHIER_CBAS$
Del £RAN3E_TEXTE3
Delete FICHIERS
Edit CRANGE_TEXTE3
Enter I FICHIER^BASS

I End
OFF
On

Load FICHIER_CBAS$
New
Program EXPRS

— génère automatiquement des numéros de ligne. Lorsque
aucun paramètre n’est précisé, Auto démarre à 100 avec
un pas de 10.

— Quitte 1’interoréteur BASIC.
— eFFace le "stock".
— sauve le programme "compilé" dans un Fichier.
— eFFace une portion du programme.
— eFFace un Fichier.
— met en édition une portion du programme.
— connecte un Fichier (remplace le clavier).
— déconnecte et Ferme le "Fichier Enter".
— suspend le "Fichier Enter".
— réactive le "Fichier Enter".
— charge un programme "compilé".
— eFFace tout et remet à jour 1’interpréteur BASIC.
— démarre un programme depuis le BASIC (voir l’aoDel

7EXECUTE dans le manuel FOS). Le déroulement du
programme BASIC est interrompu tant que le programme
démarré est actiF. Ensuite le clavier est redonné au
programme BASIC dont l’exécution reprendra.
Exemple: Program "FILER LIST *BAS”.

Rename FICHIERS, NCUVEAU-NC^_DE_FICHIERS
— change le nom d’un Fichier.

Renum t CRANGE^TEXTEZ >rsTART^LlGNE'/J C , [INC_LÎGNE%333 3
—• renumérote une portion du programme. Lorsque aucun

paramètre n’est précisé, Renum démarre à 100 avec un
ce 10.

pas

Save FICHIER^BASS Upper3l,_0FF3[,New3 C,Run3
— sauve le programme dans un Fichier de texte (code ascii).

L’ootion Upper sauve le programme en lettres majuscules.
L’option _CFF supprime le symbole dans le programme
pendant le sauvetage.
L'Dation New envoie une commande New dans le Fichier deI

sauvetage aevant le programme.
L’option Run envoie une commande Run dans le Fichier ae
sauvetage après le programme.

����������	������	���

���

6 ORDRES et FONCTIONS, GENERALITES
6.3 Commandes de Listaaes*

6.3 Commandes de Listages

Data
Function
Label
List ERANGE^TEXTEI
Doer
Order
Refgoto .
Stock
Var
Varsys

— liste l’état des ordres Data,Read,Restore.
— liste les Fonctions BASIC.
— liste les “labels" du programme.
— liste une portion du programme.
— liste les opérateurs BASIC.
— liste les ordres et mots réservés particuliers du BASIC.
— liste les lignes du texte référencées par Goto7...
— liste le contenu du “stock”.
— liste les variables avec leur type et leur contenu.
— liste les variables systèmes du BASIC.

6.4 Exécution, dépannage de programme

Cont — continue l’exécution après l’ordre Stop.
Dn Error Then I Stop — arrête l’exécution du programme à la prochaine erreur.

I CGotol NUM_LIGNE! LABEL — provoque un débranchement dans l’exécution
à la prochaine erreur.

Pop — enlève l’élément sur le sommet du “stock".
Program EXPR$ — exécute un programme Smakyô. Le programme BASIC est

suspendu pendant l’exécution de cet ordre. L’ordre est
terminé dès que le programme Smakyô est terminé.
Ex: Program ’EPRO 5000/M TRAPEZE.BAS’ ~ démarre EPRO

avec l’édition du Fichier TRAPEZE.BAS.
Résumé I — réexécute l’ordre cui a provoqué une erreur et continue.

I Next — saute l’ordre oui a provoqué une erreur et continue.
! NUM_LIGNEîLABEL — oublie l’ordre et la routine qui ont provoqué une

erreur et continue.
Run — démarre le programme (terminé par les ordres End ou Bye).
Stop — suspend l’exécution d’un programme (voir l’ordre Cont).

6.5 Ordres généraux de programmaii on

Bye — termine l’exécution d’un programme et quitte le BASIC.
Def RMUPARAM FM DEF<,PARAM FN DEF>)3=EXPR — définit un fonction.
Dim NO^^DIM(EXPR%<7EXPR%>) — définit les dimensions d’un tableau.
Edit Line LIGNES7 INDEX'/.7 MAX'/., CAR'/.

— édite le "strinq" LIGNES, olace le curseur
sur le INDEX'/ième caractère. La longueur du "strina" est
limitée car MAX’/-. Le caractère aui termine l’édition est
rendu dans CAR# (avec la touche fonction). *

End — termine l’exécution d’un programme.
Error EXPR# — provoque une erreur.
Exec EXPR$ — analyse et interprète un “string".
For VAR#!=EXPR%! To EXPR%! EStep EXPR%!3

— utilisé en conjonction avec l’ordre Next pour répéter
une suite d’instructions dans une ou plusieures lignes
entre ces deux commandes.

Gosub ! rvUT^LIGNE — appelle une routine en NUM_LIGNE7 terminée par Return.
i LABEL CC^ARAM LABEL CALLf.PARAM LABEL CALLDl — aooelle la routine LABEL

— avec des paramètres (passage par valeur ou adresse).
Goto NUY_LZGNE•LABEL — bronche l’exécution sur NUM_LIGNE ou LABEL.
IF EX-^-/7Then CIF^CLAUSEl lElse CIF^CLAUSEl 1

— choix booléen entre 2 exécutions:
si EX^R# O 0 alors Then CIF_CLAUSEJ est exécuté
sinon CElse CIF_CLAUSE12 est exécuté.

IF_CLAUSE — membre de l’énoncé de IF
’ ORDRES — une suite d’ordres (IF acceoté).

* 1 CGotol N’JM_L IGNE J LABEL — branchement sur NUM_LIGNE ou LABEL.

6

����������	������	���

���

6 ORDRES et FONCTIONS, GENERALITES
6.5 Ordres généraux de programmation

Label JMOME (PARAM_LABEL_DEF{ ,PARAM_LABEL_DEF}) 3
— définit un label avec des paramètres pour une routine

terminée par Return.
Modwdo(XX%, YY%,DX’/.,DY’X)

— change les dimensions de la Fenêtre alphanumérique
du texte. Il n’est plus possible d’écrire en dehors des
nouvelles dimensions. Définitions: voir le manuel LIB.

XX’/. — position du cadre à gauche.
YY% — position du cadre compté depuis le haut.
DX’/- — larceur du cadre.*

DY’X — hauteur du cadre.
Next CVARX!<,VAR%!>3 — termine la boucle For.
On EXPR'Z Gosub NUM_LIGNE‘LABEL { ,NUM_LIGNE ! LABEL? CElse CIf_CLAUSE23

— exécute un Gosub à l’adresse déterminée par EXPR%, de 1
ù n adresses. Si EXPR'/. ne détermine aucune adresse,
CElse CIf_CLRUSE3J est exécuté.

On EXPR-X Goto NUM_LIGNE!LOBEL { ,NUM_LIGNEILABEL? CElse CIf_CLAUSE3]
— branche à l’adresse déterminée par EXPRX, de 1 à n

adresses. Si EXPRX ne détermine aucune adresse,
CElse CIf_CLAUSE33 est exécuté.

Print { CPR’NT_EXPR3 CPRINT_DELIMITEÜR3 >
— affiche une suite d’exaression. Un délimiteur est

optionnel. Dans le cas ou aucun délimiteur n’est Fourni,
un caractère (SPACE) est aFFiché. Lorsque la dernière
expression est aFFichée, un caractère (RETURN) est envoyé
sur l’écran si aucun délimiteur ne suit 1’exoression.

RiNT EXPR — tyoe d’expression de l’ordre Printt.
I EXPR
I Format(E%,F%) EXPR%!

I
I Tab(COL’/-)

I Carxy(COL/-,LIGNE’/.)
I
I Caryx(LIGNE’/.,COL’/-)

PRINT-DELIMITEUR — délimiteur

— une expression quelconque.
— une expression numérique Formatée,

E% digit devant la virgule,
F% digit après la virgule.

— tabule horizontalement dans la ligne
mais ne recule jamais le curseur.

— positionne le curseur alphanumériaue
dans 1’écran.

— comme ci-dessu s mais COL’/, et LIGNE’/,
croisés.

d’exaression de l’ordre Print.
— aFFiche des (SPACE), tabule module Ô.
— n’aFFiche rien, accolle 1’exoression

suivante sans (S°ACE).
Rem STRING.ASCII — commenta i re(s)
Return Fin d’un routine, reprend l’exécution après Gosub.

Ordres d'assi gnat1ons6.6

Data EXPR {,EXPR? — établit la liste des données lues par un ordre Read.
Dec VAR%! — décrémente une variable (-1).
Inc VAR%! — incréments unp variable (+1).
Input INP’JT^PROMPT VAR <,VAR> C;J

— assignation de variables par le clavier,
supprime l’écho de (RETURN) sur l’écran.

Input Line IN^JT^ROMPT VAR$ I;3
— assignation particulière par le clavier: une ligne

entière est lue et copiée dans VAR$.
IVPUT PROMPT — '‘caractères d’annonce” de l’ordre Inout.

! f — aFFiche “? ".
I ; I — supprime l’aFFichage de ”? ”.
I CONST$ I, I — aFFiche un “string” et “?
I (EXPR$) I; I — aFFiche un "string”.

£Let3 VAR-EXPR <,VAR=EXPR> — assigne une variable ou plusieurs.

����������	������	���

���

Read VAR <,VAR}

Restore CNUMJ-IGNE]
Swap VAR,VAR

Ordres

6 ORDRES et FONCTIONS, GENERALITES
6.6 Ordres d’assignations

— assigne une suite de
programmées dans des

— repositionne l’index
— échanoe les contenus »

variables selon des expressions
ordres Data.
des Data pour les relire,
de 2 variables de même type.

divers

Accord (NOTE1Z,NDTE2Z

Beep(BEEPZ)
Carx y(COLZ,LIGNEZ)

Caryx (LIGNE/.,COL/.)

Eop
RandonU EX*RZ)
Tab(COL/.)

N0TE3Z, ENVELOPPE/., DUREE/.)
— joue un accord de 3 notes:

NOTE!/.,N0TE2Z,N0TE3Z=programmation par demi-ton,
ENVELOPPEZ,DUREEZ=programmation par unité de 20 ms.

— son particulier, 1 <= BEEPZ <= 7.
— positionne le curseur sur la colonne COL/ (0=gaucne) et

sur la ligne LIGNE/. (0=haut) .
— positionne le curseur comme Carxy mais avec les

paramètres croisés.
— eFFace l’écran et met le curseur en haut à aauche.
— détermine la valeur de déoart du Générateur aléatoire. •
— positionne le curseur dans la ligne sur la colonne COL/.

6.0 Ordres de programmation structurée

Do IF EXPRZ C: ORDRES]
[BLOC 2
E Do Else CORDRESI]
C BLOC]
Do End

— test booléen et exécution d’un crouoe d’instructions.
Si "vrai", exécute juscu’ù [Do Else ...] ou Do End.
Si "Faux", exécute LDa Else [ORDRES! 1 jusqu’à Do End.

Loop C: ORDRES!
C SLOC !
{ Exit IF EXPR% !
{ BLOC >
End Looo

— boucle avec plusieurs tests de Fin de boucle
placés en diFFérents endroits de la boucle.

Repeat C: ORDRES]
C BLOC]

-— boucle jusqu’à ce eue EXPRZ soit O 0

Unt i 1 EXPRZ

Select EXPR
{ Case TEST^SELECT C: ORDRES] 1
{ BLOC y
C Case Else [ORDRES]]
C BLOC]
End Select

— cherche une expression EXPR parmi plusieurs
alternatives. Si aucune alternative n’est
déterminée, alors C Case Else [ORDRES]]
et [BLOC] sont exécutés.

TEST_SELECT
TEST1-SELECT <, TEST1-SELECT}

TEST1-SELECT
I EXPR
I [EXPR] .. [EXPR]

While EXPRZ C: ORDRES] — boucle tant
[Bi.00 J
Enc L'.i le

expression de test
trouvée dans une suite

de valeur
ou de limites.

que EXPRZ O Ü.

- 8 -

����������	������	���

���

6 ORDRES et FONCTIONS, GENERALITES
E.S Fonctions mathématiques

6.9 Fonctions mathématiques

I

Obs(EXPR-X!)
Atan(EXPR-X!)
Cos(EXPR-X!)
Cosh(EXPR-X!)
Exp(EXPR'X!)
Int(EXPR'X!)
Ln(EXPR'X!)
Log (EXPR'X!)
Pi
Real (EXPR'X)
Sqn(EXPR’X!)
Sin(EX-'R'X !)
SinM EXPR-X!)
Sqrt(EXPR'X!)
Tan(EXPR-X!)
Tanh(EXPR-X!)

— valeur absolue
— arctanaante *
— cosinus
— cosinus hyperbolique
— élévation à la puissance de la constante e
— partie entière
— logarithme naturel
— logarithme décimal
— approximation du nombre pi
— conversion au type réel
— valeur du signe: 1 ou -1, 0 si EXPR%!=0
— sinus
— sinus hyperbolique
— racine carrée
— tangante
— tangante hyperbolique

I
I
I
I
I
I
I
I
1
1
9
f
I
1

6.10 Foncti ons caractères (Hstrlng“)

Asc(EXPRS)
ButleftS(EXPRS,LEN%)
ButrightSC EXPRS, LEN’/-)
ChrS(EXPR%)

HexS(EXPR%!)

LeFt$(EXPRS,LEN%)
InoutS(LEN%)
Instr(INDEXAI)

LineS (LIGNEESIC'/-
LowerS(EX^RS)

— donne la valeur ascii du 1er caractère.
— retranche LEN% caractères de la partie gauche de EXPRS.
— retranche LEN’/- caractères de la partie droite de EXPRS.
— donne le "strina” de 1 caractère dont la valeur ascii

est déterminée par EXPR%.
— donne le "string” obtenu par la conversion

numérique ==> hexadécimale-ascii.
— donne LEN’/. caractères de la partie gauche de EXPRS.
— lit LEN% caractères du clavier et donne le "string”.
— cherche le "strina” BS dans RS, deouis le INDEX%ième » 7

caractère, sinon depuis le début et donne l’index
de l’occurence, 0 dans le cas contraire.

— donne le "string” de la ligne LIGNE’/- du programme.
— effectue la conversion majuscule ==> minuscule de chacune

des lettres de EXPRS et donne le résultat.
WidSCEXPRS,INDEX%,LEN%) — extrait une portion de EXPRS (LEN% caractères deouis

— le INDEX’/ième caractère) et donne le résultat.
NufiiS(format (E%,F’Z)] EXPR%?) — donne le “string” obtenu oar la conversion

— numérique ==> décimale-ascii. Le "string" est
ootionnellement Formaté (voir l’ordre Print).

Val(EX^RS)
Valhex(EX^’RS)

— donne LEN% caractères de la partie droite de EXPRS.
— donne un "string" de LEN% caractères (SPACE) <H’20>.
— donne un "string” de LEN’/- caractères <CAR’/-> .
-- effectue la conversion minuscule ==> majuscule de chacune

des lettres de EXPRS et donne le résultat.
— donne la valeur décimale de EXPRS.
— donne la valeur hexadécimale de EXPRS.

����������	������	���

���

6 ORDRES et FONCTIONS, GENERALITES
6.11 Fonctions et "varsys" spéciales

6 . il Fonations apéa1a1es

Clock$
Dim(VAR(*),)

M-DIW = 0
1

Enter

Error
Error^(
False
Free

ERREUR’/.)

High(EXPRX)
Key

Low(EXPR’X)
Pos
Random(M_RAMDOM%)

M_RAMDOM’X = 0
1

•Testbit(EXPR’X,3IT%)

True
Version

6.12

— donne l’heure du système.
— donne des renseignements sur un tableau:
— le nombre de dimensions du tableau
— le nombre d’éléments de la 1ère dimension.
— le nombre d’éléments des dimensions suivantes.
— indique par "vrai" ou "Faux” si le '‘fichier ENTER" est

ouvert.
— donne la valeur de la dernière erreur BASIC.
— donne le message d’erreur PSos.
— donne la valeur 0, résultat "faux" d’un test booléen.
— donne le nombre de bytes libres pour le programme.
— donne le "high byte” d’un "integer".
— attend un touche du clavier et retourne le code de

la touche ("low byte") et de la touche fonction
("high byte").

— isole le "low byte" d’un "integer".
— donne la position courante du tabulateur dans la ligne.
— donne un nombre aléatoire:
— redonne .le nombre orécédent.
— donne un nouveau nombre.
— indique par "vrai" (-1) ou "Faux" (0) l’état du bit BIT%

d’un "integer".
— donne la valeur -1, résultat "vrai" d’un test booléen.
— donne la valeur décimale de la version du BASIC.

Ordres et fonctions souris (MOUSE)

Ordres

Mouse I CFF
I On

MouseC XX.Y'X)

Fonct1on

M_M0USE7-)
M MOUSE7. = 0

— retire la souris de PSos pour le BASIC.
— redonne la souris à PSos.
— positionne la souris sur l’écran.

— lit l’état de la souris:
— détermine un nouvel état de la souris et donne la coor. X.
— donne la coor. Y.
— donne l’état du bouton de gauche.
— donne l’état du bouton de droite.
— donne l’état du bouton du centre.
-- indique si le nouvel état est vraiment un nouvel état.

6.13 Touches spéciales et softkeys

Ordres

Setbar EXPR’X — allume les barres sous les softkeys. A chaque .bit de
EXPR’X corresoond une barre, de aauche à droite oour les
bits 0 à 15.

Setmenu H0$,L0$,H1$,L1$,H2$,L2$,H3$,L3$,H4$,,H5$,L5$
— affiche des nouveaux textes dans les softkeys.

Les "string" Hx$ sont affichés sur la ligne du haut, les
Lx$ sur la ligne du bas. Les "string" x0$ sont affichés
dans la softkey isolée à gauche, les autres de gauche à
droite dans les touches suivantes.

— Exemple: Setmenu ’’,’de’,’’,’gauche’, ” ,’â’,’’,’droite,’,’’,’en’,’’,’bas’
Sets^ey SXEY$ — programme les touches spéciales.

— 10 “■

����������	������	���

���

Ê ORDRES et FONCTIONS, GENERALITES
6,13 Touches spéciales et softkeys

Exemple: Setskey Chr$(0)&’DFRC’ — dévie les 4 touches
DFRC du traitement normal. Chr$(0)& conserve
l’action habituel de la touche FO (break).

Fonat1on

Skey (M_SKEY*)
M_SKEY* = 0

1

— donne l’état des touches spéciales:
— donne les actions sur les touches spéciales.
— donne l’état des touches soéciales.

Exemple: IF Testbit(Skey(1),2) Then — test si
la 2ième touche spéciale est enfoncée (selon
l’exemple ci-dessus dans Setkey).

I
Ordres

De 1ms EXPR*

Priority EXPR*

Timeout EXPR*

— attend EXPR* * 20 ms.

— change la priorité d’exécution du BASIC.

— change le temos d’attente des processus du BASIC.

Fonct1ans

Priority — donne la priorité actuelle du BASIC.

Timeout — donne le temos d’attente des processus du BASIC.

I S E I CM I ERS

Ordres

I
Close CFile(CANAL*)3 — Ferme un Fichier et libère le canal BASIC ou Ferme tous

les Fichiers.
Coromand Fi le(CANAL*), TYPE

TYPE_CANAL* =
TYPMM* = 1

CANAL*. COMMANDE envoie une commande au

mémoire de masse

"driver".

TYPKEY* = 2
TYPDIS* = 3
TYPWDO* = 4
TYPIO* = 5
TYPPRI* = 8
TYPNETW* = ’7
TYPSTAT* = 8

COMMANDE

Get Fi le(CANAL*)

— "string

— clavier
— écran (bit
— Fenêtre dans
— périphériaue
— imprimante
— réseau local
— lecture d’un

de commande
*<C03équivalent à

(ré-assignable)
mao comolet)

un écran
genre "streamer”

type SWAN
statut uniquement
ex: ’*<’&Chr$(0)

dans le FILER.
,VAR <,VAR}

— assiane une suite de variables. Le Fichier «
suite de données en représentation binaire

contient une
des variables.

Une VAR* occupe 2 bytes, une VAR! occupe 4 bytes, une
VAR$ occupe un nombre de bytes égal à sa longueur.
Il est nécessaire de prévoir le nombre ce caractères
d’une VAR$ avant de la lire par Get. Cette ooération est
effectuée en donnant une valeur initiale à VAR$,
contenu étant sans imoortance, c’est la longueur
nombre de caractères) qui est testée.

le
(le

Input File(CANAL*) ,VAR <,VAR} — assigne une suite de variables.
Inout Line Fi le(CANAL*) S,VAR$3

— lit une ligne entière et assigne une variable

1 -11-

����������	������	���

���

8 FICHIERS
5 .13 Touches spéciales et soFtkeys

"string" ou absorbe simplement la Fin d’une ligne.
Open Fi le (CANAUX) ,FICHIERS,M_O-’EN'X{ ,LEN_BJFFER‘X}

— ouvre un Fichier en lecture ou écriture, en mode
buFFerisé (oar déFaut:1024 bytes) ou interractiF si
LEN_B’JFFERX=O.

M_OPEN'X — mode d’ouverture:
0 CCr OPEXCUX] COr OPRD’X] COr OPWRX]

» OPEXCUX = 1 — ouverture exclusive
OPRDX = 2 — ouverture en lecture
OPWR% =4 — ouverture en écriture

LEN_BJFFER% = 0 — buFFer longueur nulle: Fichier interactiF.
> 0 — Fichier avec mémoire tampon.

Pos EoF(CA\!AL%) — positionne l’index de lecture&écriture à la Fin du
Fichier.

Pos File(CANAL%), POSITION!
— positionne l’index de lecture&écriture dans le

Fichier, saute POSITION! bytes depuis le début du
Fichier.

Print Fi le(CANAUX) C,J — écrit un caractère (RETURN) dans le Fichier.
Print Fi le(CANAUX), < CPRINT_EXPR] CPRINT^DELIMITEUR] }

— écrit une suite d’expressions dans un Fichier.
PRINT^EXPR et PRINT^DELIMITEUR sont décrits dans
l’ordre Print.
CarxyO et CaryxO sont retranchés des choix de
PRINT_EXPR.

Put Fi le(CANAUX), EXPR <, EXPR>
— écrit une suite d’expressions dans un Fichier mais en

représentât ion binaire pour chaque expression.

Foncti ona et "varsys"

EoF(CANAUX) — indique par “vrai” ou "Faux” si l’index de lecture^
écriture est à la Fin du Fichier.

Eoln(CANALX) — indique par "vrai" ou Faux" si l’index de lecture
est devant un caractère (RETURN).

Input$ (Fi le (CANAUX) , LEN’X) — lit LENX caractères et donne ces caractères.
Pos EoF(CANAUX) — donne la longueur actuelle du Fichier.
Pos File(CANALX) — donne la position de l’index de lecture&écriture.
Rdstatus File(CANAUX) , TYPE CANAUX, LEN’X, VAR$ — lit le statut d’un "driver".

����������	������	���

���

9 GRAPHISME

^os □ 18/04/B‘l Mercredi 15: <11:39

> List
160 Eop
llü Skiptot 300,150) : CircleC 100)
120 SkiptoC 400,140) : CircleC 110)
130 SkiptoC 200,180) : CircleC 80)
140 SkiptoC 280,86) : Fi 11
150 End

Auto Cleor Stock Resuri Rergo.Lobel Uor

Cqraph

Enter Snue
List Edit

Ordres

CircleC RAYON'/.)
Coor (X7.,Y% >

File Open Close Uhere.Turn
Renui# Runj Stop Cont^j Goto Gosub Retur Peint Input Line Skipt.Houe

Cturn
Cwindow
Eornove
Fill
Igroph
Move (LONGUEUR'/.)
MovesmG (X7, Y'/., M_SMG*)

M_SM6% = 0 à 7
MovetoC X7.,Y7.)
*ovetor(DX7-,DY%)
Pointe X7.,Y7.)
Pointe(DX^,DY%)
Rot(ALPHA !)
Scale(ECHELLE!) .
Sgraph

Skip(LONGUEUR'/.)
SkiptoC X%,Y*)
Skiptor(DX7.,DY7.)
Turn(ALPHA!)
Tumr(DALPHA! >

f DASH7.

copie les données graphiques courantes dans les données
graphiques auxiliaires.
dessine un cercle.
positionne les coordonnées des axes, le point (010)
sur l’écran.
calcule la pente du dernier tracé en coor. cartésienne.
eFFace la Fenêtre graphique.
termine un tracé interrompu.
remplit une surFace délimitée par un contour Fermé,
initialise tous les paramètres graphiques.
dessine un tracé en coor. polaire.
dessine un tracé compatible Smaky 6.
trait compatible Smaky S.
trace en coor. cartésiennes absolues. ■
trace en coor. cartésiennes relatives.
dessine un point en coor. cartésiennes absolues,
dessine un point en coor. cartésiennes relatives,
tourne les axes de dessin.
détermine l’échelle des axes de dessin.
permute les données graphiques courantes avec les
données graphiques auxiliaires.
saute en coor. polaires.
saute en coor. cartésiennes absolues.
saute en coor. cartésiennes relatives.
détermine la direction en coor. polaires.
détermine la direction en coor. polaires relativement
à la précédente direction.
détermine le type de trait d’un tracé.
trait Fin, sans aucune Fuite, mode spécial.
trait Fin, mode courant, épaisseur de 1 à 4 points.
traits............ , - - -, + + + +,
programmables en 4 épaisseurs et 4 longueurs.
détermine le type d’opération d’un point d’un tracé.
pas d’opération sur le point.
allume le point.
éteint le point.

13

����������	������	���

���

9 GRAPHISME

3 — inverse le point.
4 .. — modes spéciaux

Window(XMIN%,YMIN^>XMAX^,YMAX’X) — détermine les dimensions de la fenêtre du
— graphisme dans l’écran du BASIC.

Fonctions et Varsys

Coar(M_COCR%)
M_COORX = 0

° 1
Cpoint
Eomove

Rot
Scale
Testât X%.Y“Z) • J

Testpr(DX’X,DY%)
Tu rn
Typdash
Typnt
Wherepen(M_WHERE%)

M-WHERE* = 0

Windowt M^WINDOWX)
«.WINDOWS = 0

1

donne les coordonnées de l’origine sur l’écran.
donne 1’abscisse.
donne 1’ordonnée.
donne le nombre de points affectés par le dernier tracé,
indique par “vrai” ou faux” si le tracé est complet
(mode de trait soécial).
donne la oente des axes.
donne l’échelle appliquée sur les axes.
indicue par "vrai” (allumé) ou "faux” (éteint) l’état
d’un point de l’écran.
comme Testa mais en coordonnées cartésiennes relatives,
donne la direction polaire.
donne la valeur du type de trait courant.
donne la valeur du tyoe de point courant.
donne des informations sur le dernier tracé,
donne la coordonnée courante graphique programmée x.

» H H lt H l| y

" " ” " " sur l’écran x.
” ” H II H II II y

donne les dimensions de la fenêtre graphiaue.
donne XMIN% courant
donne YMIN% courant
donne XMAX"/. courant
donne YMAX’/- courant

□ 17/04/84 Hardi 14:12:25

Mém:5426 Max :258 F i ch :FOURMIS.6ESD0

^ërit^resTcherchelsuiuant recèdent <|modifie END
lement:o longueurlement:5

odresses_fournisseurs_EPSITEC
5M

nom
pr ^-nom
rue
c.postal
ville
état
pC’JS
tel.

Genève 85
1004
Lausanne

24 09 17
comm.

suiuont . modifie

Lorscu’on utilise les commances GESDO, le module "GESDO.BIN” est d’abord charaé en * *
mévoi-e central oms exécuté. Les appels GESDO permettent la gestion d’une base de
donnée complexe. L’utilisation ce ces appels depuis le BASIC est orésenté dans le
manuel GESTION.

-14-

����������	������	���

���

10 MODULE GESDO

Paramètres

CANAL_GESDO*
ORDRE_GESDO*
F0NCTI0N_6STIDN*
PARAMETRE_GESDO

EXPR* — 1 <= CANAL_GESDO* <= 7
EXPR* — un numéro de commande GESDO, voir GESTION.
EXPR* — un numéro de fonction GESDO, voir GESTION.
EXPR — seloti la commande GESDO, voir GESTION.

Ordre

Gesdo(ORDRE GESDO*,CANAL GESDO*) {,PARAMETRE GESDO?
— exécute une routine GESDO.

Fonction

Gesdo(FONC_GESDO*,CANAL_GESDO*)
— exécute une Fonction GESDO.

EXPRESS I ObIS

EXPR COPERATEURJJNAIRE! FACTEUR [OPERATEUR FACTEUR!

FACTEUR I CONSTANTE
I VARIABLE
I FONCTIONIVARSYS

— ex: 4 ou 12 ou "résultat*"
— ex: MACHINE ou TABLEAU O
— ex: Sin (EXPR-Z!) ou Coor(M_COOR%)

12.1 Opérateurs unaires

Not EXPR’Z
EXPRX!

— complément à 1 pour chaque bit
— + 1-, ex: Print - 4

12.2 Opérateurs logiques

EXPRZ And EXPR'Z
EXPR* Or EXPRX
EXPR% Xor EXPR’/.

— et bit à bit
— ou bit à bit
— où-exclusif bit à bit

12.3 OpèreLeurs relationnels

EXPR (EXPR
EXPR > EXPR
EXPR = EXPR
EX^R <= EXPR
EXPR >= EXPR
EXPR O EXPR

— plus petit que
— plus grand aue
— égal à
— plus petit ou égal à
— plus grand ou égal à
— différent de

12.4 Opérateurs ar1thmétiques

EXPR-/.’ + EXPR-XÎ
EX^R-X! - EXPR-X!
EXPR-Z! * EXPR-Z!
EXPR-X! / EXPR-Z!
EXPR-Z Div EXPR-Z
EXPR-Z Mod EXPR-Z

— addition
— soustraction
— muitiplication
— division réelle
— division entière
— reste de la division entière
— élévation à la ouissance

����������	������	���

���

12 OPERATEURS
12.5 Opérateur “string"

12.5 Opérateur "string”

EXPR$ +I& EXPR$ — concaténation de “string”

12.6 Parenthèses
O

(EXPR) — évalue l’exaression entre paranthèses.

12.7 Schéma de précédence

O,+I- unaire
**| A
*,/,Div,Mod

<’>, = ,<=,)=,<>

Not
And
Or,Xor

— exécuté en premier

— exécuté en dernier

COMSTANTES

CONSTX

CONST!

I NB_ENTIER -- ex: 123
I H’NB_ENTIER_HEXA — ex: H’3E8 (vaut 1000)

I NB_REEL — ex: 10E10
I H’NB_REEL_HEXA -- ex: H’IHQ (vaut 256)

CONSTé I ’STRING_ASCII’ — ex: ’une chaîne de car.’
I "STRING_ASCII" -- ex: "#mml:DEM0"

— si le délimiteur apaarait dans le "string", il Faut le doubler comme dans
— le mot ’aujourd’’hui’.

NB_ENTIER

NOMBRE

NB_ENTIER_HEXA

NOMBRE.HEXA

DIGI“_HEXA

C+l-3 NOMBRE -------3276Ô <= NB_ENTIER (= 32767

CHIFFRE { CHIFFRE }

[+1-3 NOMBRE_HEXO -------6000 <= NB_ENTIER_HEXfi (= 7FCF

DIGIT_HEXfl { DIGIT_HEXfl }

0 ! 112î314151617I S IG101BICIDIEIF — base hexadécimale
lalblcldlelf

NB_REEL C+l-3 NOMBREC.[NOMBRE]3 CEC+1-3[NOMBRE!3 -- env. 1E-20 .. 1E+20

NB_REEL_HEXA C+l-3 NOMB.RE_HEXAC. CN0MBRE_HEXA33 CHC+1-3 CN0MBRE_HEXR33

STRING_05CII CAR_A5CII < COR_ASCII ?

- 16 -

����������	������	���

���

14 VARIASLES

Les variables sont définies de 2 Façons, pour 2 contextes totalement différents:
- l’utilisation lors d’un calcul d’expression.
- l’assignation. «B

Les variables suoportent actuellement 3 types de données:
- le nombre entier codé sur 16 bits, identifié par le signe
- le nombre réel codé sur 32 bits, sans identificateur (! pour la description).
- le "string" (long, max env. 32000 car.), identifié par le signe $.

Les variables sont construites pour 4 modes d’utilisation:
- VAR_NOR: la "variable normale" ù usage général.
— VAR_DIM: la "variable tableau" pour des vecteurs, des matrices ou éq.
- VAR_FN: la "variable fonction" pour la définition de fonctions particulières.
- VAR_IND: la "variable indirecte" oui permet le passage de paramètres par adresse

dans les routines du programme BASIC.

VfiR_EXPR
VA R

VAR_NOR I VAR_D1M I VAR_FN I VAR_IND -- calcul d’expression
VAR_NOR I VAR_DIM I VAR_IND — assignation (Let,Input,...)

VAR_N0R
VAR_NOR%'
VAR_NOR!
VAR_NOR$

VAR_NOR'/. I VAR_NOR! I VAR_NORé
NOM-/.
NOM
NOMS

— "variable normale"
-- ex: VITESSE, ALTITUDE, I

VAR_D1M
VAR_DIM%
VAR_DIM!
VAR_DIM$
NCX_DIM%
N0M_DIM!

VAR_DIM7. I VAR_DIM! I VAR_DIMS
N0M_DIM7. (EXPR7X ,EXPR%»
NOM_DIM! (EXPR7.<,EXPRX>)
N0M_DIM$(EXPR7.< ,EXPR%>)
NOM%
NOM

- NOMS

— "variable tableau"
— ex: MATRICE(1,2)

VAR_FN
VAR_FN%
VAR_FM!
VAR_FN$
NOX_FN%
N3M_FN!

F-<!$

VAR_FN7. I VAR_FN! I VAR_FNS — "variable fonction"
N0M_FN7.[(PARAM_FN_CALLf ,PARAM_FN_CALL>) 1 — ex: Fn_XX (4)
NÛM_FN!C(PARAM_FN_CALL<,PARAM_FN_CALL»3
NOM_FN$C(PARAM_Fn2cALL{,PARAM_FN_CALL»3
Fn_N0M%
Fn_N0M
Fn_N0MS

VAR_IND
VAR_IND%
VAR_IND!
VAR_IND$

VAR_IND7.
ÊN0M7
©NOM
©NOMS

VAR_IND! VAR_IND$ — "variable indirecte"
— ex: ©RESULTAT

14.1 Paramètres d'une VAR_FN

PAR6M_FN_DEc VAR_NOR
— le corps de la définition d’une VAR_FN dans l’ordre
— une suite de VAR_NOR pour le passage des paramètres

Def Fn_... utilise
(□or valeur).

oaram_fn_call expr
— utilisation de la VAR_FN avec ses paramètres.

14.2 Paramètres d'un LABEL

PARAM_LABEL_DE~ PARAM_LABEL_DEF_NOR I PARAM_LABEL_DEF_IND
— les paramètres utilisés dans le corps de la définition d’un LABEL sont

ce 2 types: normal (direct) ou indirect, pour les 2 types de passage
de paramètres: par valeur ou par adresse.

����������	������	���

���

14 VARIABLES
14.2 Paramètres d’un LABEL

PARAM_LABEL_DEF_NOR VAR_NOR
— passage par valeur

PARAM_LABEL_DEF_ÎND VAR_IND
— passage par adresse

PARAM_LASEL_CALL PARAM_LABEL_CALL_NOR I PARAM_LA8EL_CALL_IND
— les paramètres utilisés dans l’appel ae la routine sont de 2 types:

» des valeurs ou des adresses.
PARA^LABEL^CALL^NOR EXPR

— passage par valeur.
PARAM_LABEL_CALL_IND VAR^NORINOM_DIM(*)INOM_FNIVAR_IND

— passage par adresse d’une variable normale, d’un tableau, d’une Fonction ou
d’une autre variable indirecte.

15 .1 Conjugaison d'un verbe

L’exercice consiste à conjuguer un verbe régulier à terminaison -er. Nous nous
contenterons de conjuguer la 1ère personne du singulier et la 1ère personne du
pluriel du temps présent.

Voici le listing:

’nous ’

V*
LeFt*(V*,Len(V*>-l)
+ Left*(V*,Len(V*>-2 QHS

Les opérations effectuées dans chaque ligne sont:
100) demande un verbe (la forme infinitive) à l’oaérateur.
110) affiche ’je ’ puis la conjugaison aui est construite en retirant la

dernière lettre de la forme infinitive du verbe, soit la lettre r.
120) affiche ’nous ’ puis la conjugaison aui est construite en retirant les

deux dernières lettres de la forme infinitive du verbe et en accolant la
terminaison ’ons’.

130) termine le programme.

Ce procramme fonctionne correctement mais il a un défaut: il est "linéaire”,
c’est-à-dire cu’il commence en ligne 100 et se termine en ligne 130. Cela n’est
pas critique pour un petit orogramme mais devient inadmissible pour des grands
programmes (programme "spaghetti"). Une meilleure aparoche est la décomposition
du problème en plusieurs petits problèmes.

Voie i le nouveau listing:

100 Inpu t ’verbe’,V$
110 Gosub Label^CONJUGUE(V$)
120 End
130 DeF ="n_SD$() «Sutright$ (I$71)
140 Label_CONJUGL^ (VERBES)
150 Print ’je ’ l Fn_SD^(VERSE*)
* c.f) ^>rint ’nous ’ Z: Fn SD* (En SD* (VERBE*)) & ’ons’
1 ”7 O R e t u r ri

points intéressants sont:
le programme "principal" tient dans les lignes 100 à 120. Il demande à
l’opérateur un verbe puis appelle une routine en donnant le verbe comme
paramètre.
la définition d’une fonction Fn_SD$ aui retourne les caractères de son

- là -

����������	������	���

���

15 EXEMPLES BASIC
1 5.1 Conjugaison d’un verbe

J

d)

e)

propre paramètre d’entrée sauf le dernier caractère.
la définition d’une routine de conjugaison dans les lignes 140 à 170. La
routine reçoit un paramètre, le verbe à conjuguer. Ce type de passage de
paramètre est dit “par valeur'*. La variable VERBES oui reçoit le verbe à
conjuguer, est d’abord souvé dans le “stock”. Le contenu original de VERBES
avant l’appel de la routine de conjugaison, est retrouvé lorsque la routine
est terminée par l’instruction Return.
il est maintenant possible d’utiliser la routine de conjugaison en mode
directe, c’est-à-dire en taoant directement au clavier par exemple:

Gosub LabelJZONJUGUEt ’cirer’)
le symbole & est identique au symbole + dans les exoressions de chaînes de
caractères ("string"), tous les deux représentent la concaténation de
“string".

1 5.2 Dessin d'un carré et d'une maison

11 y a 2 modes distincts de dessins:
- par des déplacements polaires (1 angle et 1 distance).
- par des déplacements cartésiens (1 abscisse et 1 ordonnée).

Le dessin d’un carré est un motif régulier et répétitif. Il est avantageux
d’utiliser le mode polaire. Les angles sont donnés en radian (1Ô0 degrés corresaond
à PI radian, PI=3.14159...).

Voici le listing:

100 Sk i pt o(100,100)
110 Tum(Pi/2)
120 For 1=1 To 4
130 Move(100) : Tumr(—Pi/2)
140 Next
13 O E r'i d

Les opérations effectuées dans chaque ligne sont:
100) positionne l’angle inférieure gauche du carré.
110) détermine la direction polaire origine.
120) répète 4 x la ligne 130 (et la ligne 140 également). .
130) motif élémentaire d’un côté du carré. Noter l’emoloi de l’ordre Turnr oui

permet de tourner relativement à la dernière direction connue et qui
deviendra la nouvelle direction.

140) fin de la boucle de répétion.
150) fin du programme.

Le dessin stylisé d’une maison est irrégulier. Il est plus commode d’utiliser le
mode cartésien.

Voici

100
110

1isting :

100,100
200,100
200,200

00,100

)

L’ordre ><ipto (traduction: saute vers) déolace la plume sans trace.
L’ordre r<oveto (traduction: avance vers) déolace la plume avec une trace.

����������	������	���

���

15 EXEMPLES BASIC
15.3 Dessin d’un polygone

315 Dess1n dzun polygone

Ce dessin utilise le mode de déplacement polaire comme le dessin du carré mais une
petite fantaisie est ajoutée: on incréments (ou décrémente) la longueur du côté
après chaque dessin d’un côté.

Voici le listing:

100 SkiptoC 350,200)
110 Turn(Pi/2)
120 0=10,1=1,A=45*P i/180,N=100
130 For J=1 To N
140 Move(C)
150 C=C+I
ISO Tumr(A)
170 Next
ISO End

Les variables déclarées dans la ligne 120 sont:
C la longueur du côté initial.
I l’incrément du côté.
A l’angle de rotation du prochain côté.
N le nombre de côté à dessiner.

Des dessins agréables sont produits
liane 120 (utiliser l’ordre Edit):

C= 1= A=

en variant les paramètres d’assignation de la

N= commentaire

100
100
10
10
10

90*PI/180
72*P1/180
144*PI/180
120*PI/180
124*oi/180

4 dessine un carré
5 dessine un pentagone
100 joli dessin
100 spirale triangulaire
100 joli dessin

0
O

5

15 .4 Lecture d'un fichier

Ce programme lit un fichier BASIC et l’affiche sur l’écran.

Voici le listing:

100 Inout ’quel fichier BASIC voulez-vous voir’, F$
110 F$=F$+’.BAS’
120 0oen F i1e(1) ,F$ 7 2
130 If Eof(l) Then 170
140 Imput Line File(l), A$
150 Print A$
180 Goto 130
170 Close File(l)
130 End

Les opérations effectuées dans chaque ligne sont:
100) le programme demande à l’opérateur le nom du fichier BASIC à afficher.
110) l’extension ’.BAS’ est accolée au nom du fichier BASIC.
120) le fichier est ouvert en lecture. Une erreur sera produite si quelque

chose ne fonctionne pas (fichier inconnu,...).
130) l’indication "fin de fichier atteinte” (la fonction Eof) est valide dès

l’ouverture du fichier. Il est impératif de tester eue le fichier contient
encore auelcue chose avant ce commander une lecture dans le fichier
(contrairement à l’usage des fichiers BASIC du SmakyG). Cette façon
d’utiliser les fichiers est compatible avec le language PASCAL.

140) une ligne entière est lue.

— 20 —■

����������	������	���

���

15 EXEMPLES BASIC
15.4 Lecture d’un Fichier

150) la ligne est affichée.
160) boucle pour la lecture de la ligne suivante.
170) le fichier est fermé.
180) le programme est terminé.

Ce programme fonctionne correctement. Il comporte un boucle, la boucle de lecture
de chaque ligne du fichier et de son affichage. Cette boucle pourrait être définie
de la manière suivante:

tant que le fichier n’est pas vide, lit une ligne et l’affiche puis recommence.

La traduction en BASIC est: While Not Eof() ... End While.

La boucle While EXPFW ... End While exprime parfaitement ce que les lignes 130, 160
et 170 (sortie de la boucle) réalisent.

Voici le nouveau listing:

100 Input. ’quel fichier BASIC voulez-vous voir’,
110 .BAS’
120 O oôm F i1e (1) ,,2
130 While Not Eof(i)
140 Ir. put Line ^ileCl) , A$

15.5 Impression d'un fichier

L’imprimante a un nom logique: Cn utilise ce nom logique comme un
fichier.

Voici le listing:

Les opérations effectuées dans chacue ligne sont:
100) l’imprimante est "ouverte" en mode écriture exclusive.
110) le programme demande à l’opérateur le nom eu fichier à imprimer.
120) le fichier à imprimer est "ouvert" en mode lecture ron-OEcl^sive
130) Eof teste si le fichier à imprimer est vide ou entlère.feî’t lu.
140) une ligne entière est lue.
150) la ligne est imprimée.
160) boucle pour la ligne suivante à imprimer.
170) ferme le fichier à imprimer.
180) ferme 1’impr imante.
1SO) ter ru i ne 1 e p»rog 'a mme.

La boucle ce lecture et d’écriture peut également être ccrs^uite avec u :
While EXP^*/. ... Enc While, courue pour l’exemple précédent.

����������	������	���

���

