
Novembre 1982

EPSOTEC-sj/stem sa

����������	������	���

���Mis � disposition par Jean-Daniel Nicoud
Mars 2024

O

SAMOS: SMAKY AND MICROFLOPPY OPERATING SYSTEM

Révision 1-G et Ï-H

A. Ca pt

����������	������	���

���

TABLE DES MATIERES

Disque souple
Configuration hardware

Configuration software8.2

SANGS: description générale

L'autoparamétrisation
L'ordre BOOT
Organisation contiguë
Accès
Indirections sur les routines de base
Les limites de SAMOS
Les fichiers périphériques
Principes généraux des appels SAMOS
Organisation des disquettes

8.4' Les appels SAMOS

8.4.1 Description générale des paramètres
8.4.2 Description des messages d'erreur

8.4.3 Appel 0
8.4.4 Appel 23
8.4.5 Appel 35
8.4.6 Appel 3
8.4.7 Appel 24
8.4.8 Appel 4
8.4.9 Appel 6
8.4.10 Appel
8.4.11 Appel
8.4.12 Appel
8.4.13 Appel
8.4.14 Appel

7CREBLK
7CREATE
?CDIR
70PEBLK
70PEN
7CL0SE
7RDBL0C

8.4.15Aopel
8.4.16 Appel

25 7RDBYTE
7 7RDLINE
10 7WRBL0C
26 7WRBYTE’
11 7WRLINE
16 7LIST
1 7DELETE

8.4.17 Appel
8.4.18 Appel
8.4.19 Appel
8.4.20 Appel
8.4.21 Appel
8.4.22 Appel
8.4.23 Appel
8.4.24 Appel
8.4.25 Appel
8.4.26 Appel
8.4.27 Appel
8.4.28 Appel
8.4.29 Appel
8.4.30 Appel

2 7RENAME
14 7C0MPRE
13 7LG0
15 ?FORMAT
5 7RESET
12 7CLR
20 7CHATR
21 7CHATPT
22 7ARGS
17 ? RTN
27 7UPDATE
20 7ERR0R
31 ' 7RDER0
33 7GNBL0C

8.4.31
8.4.32
8.4.37
8.4.34
8.4.35
8.4.36

. 8.4.37

Appel 36
Appel 34
Appel 37
Appel 42
Appel 43
Appel 40
Appel 41

7L0AD
7DIR
7GDIR
7SHEAD
7GHEAD
7M0DAY
7GSAM0S

8.5 Description des indirections sur les routines de base

8.5.1 Description générale des paramètres
8.5.2 RODWIB
8.5.3 RIBWOD
8.5.4 TSTDRI
8.5.5 STOPFLO
8.5.6 INIFLO
8.5.7 Indirection sur RTN
8.5.8 Indirection sur BOOT
8.5.9 Adresse NMIRTN
8.5.10 Routine ADBLK

8.6 Exemples d'utilisation des appels SAMOS

8.6.1 Introduction
8.6.2 Un premier exemple simple et commenté
8.6.3 Apprenons plus en améliorant ce programme
8.6.4 Quelques routines extraites de programmes

����������	������	���

���

8.1 CONFIGURATION HARDWARE FLOPPY DISQUE

L'installation du disque souple sur le SHAKY6 se compose de plusieurs
éléments hardware:

. le contrôleur de drive

. de 1 jusqu'à trois drives

. l'alimentation des drives

LE CONTROLEUR
«

Il est connecté au SMAKY sur la prise périphérique 26 pôles latérale.
Il est alimenté en +5V par cette même prise.

C'est en fait l'interface de commande du ou des drives qui est connecté
à ce contrôleur par un câble à prises multiples (Daisy Chain)

Le contrôleur réalise les travaux suivants:
. codage et décodage des signaux disque
. data input/output
. commande fonctionnelle du drive.

CODAGE ET DECODAGE DES SIGNAUX DISQUE

Le système de codage utilisé est le MFM qui permet la double densité sur
le disque. Le principe de ce codage est illustré par le dessin qui suit
suit et qui montre le diagramme de temps du codage MFM d'un byte 142o.

cellule

Chacune de ces impulsions est enregistrée sur le disque sous forme d'une
transition de flux magnétique. On peut s'imaginer que chacune de ces
transitions représente un petit aimant enregistré sur le media. Chacun sait
que deux aimants mis en voisinage se contrarient mutuellement. C'est aussi
ce qui se passe sur le disque, d'autant plus que les distances entre ces
"petits aimants" ne sont pas égales.

Le petit dessin ci-dessus nous montre que, pour cette configuration de bits,
les impulsions A et B ont tendance à se déplacer dans le sens des flèches
étant donné leurs positions asymétriques par rapport aux impulsions qui les
entourent. Ce phénomène est d'autant plus fort que l'on se rapproche de
l'intérieur du disque. En effet la densité est plus grande sur les pistes
i ntérieures.

piste extérieure,
pulsions plus espacées

(256 bytes)

V —------- piste intérieure
pulsions serrées s. 1-1

����������	������	���

���

Ce phénomène nécessite la pré-compensation pour garantir une lecture correcte
des informations. Ceci consiste à enregistrer les impulsions de type A et B
avec un offset avant ou arrière de manière à ce que, une fois repoussées, les
impulsions occupent la place correcte.

Le codage avec.la pré-compensation décrite ici, ainsi que le décodage de
ces signaux lors d'une lecture, sont réalisés entièrement par une unité
mi cro-programmée.

DATA INPUT OUTPUT

Le codage MFM est du type sériel, il nécessite donc une sérialisation de
l'information à l'enregistrement et une désérialisation à la lecture.
Le contrôleur effectue ces tâches par des registres à décalage. La
communication avec le SMAKY se fait donc en mode parallèle par l'intermédiaire
de deux périphériques pour les data (écriture ou lecture) et de deux péri­
phériques de contrôle de liaison (handshake).

(voir aussi plus loin la description des périphériques).

COMMANDE FONCTIONNELLE DU DRIVE

En plus du codage et décodage de l'information, il faut naturellement
pouvoir commander toutes les fonctions du drive, telles que déplacement de la
tête, marche-arrêt du moteur, sélection des modes, etc.

Ces fonctions sont réalisées par le processeur du SMAKY et le software "bas
niveau" des appels SAMOS, utilisant le périphérique SCONT du
contrôleur. Celui-ci se charge de transmèttre les ordres aux différents
organes concernés, soit au niveau du contrôleur directement (exemple:
activation de 1'interruption, sélection du mode écriture), soit au niveau du
drive (exemple: mise en marche du moteur). Le sychronisme est obtenu par une
interruption, générée par le contrôleur, à chaque début de secteur. Ainsi donc,
les routines de plus bas- niveau telles que RBBLK (read block), WRBLK (write block)
sont des routines d'interruption.

����������	������	���

���

A toutes fins utiles,
du contrôleur:

voici le tableau de définition des périphériques

$30

LDINQ LDBYTE

$31

RDINQ

LDCONT

LEXIQUE DU TABLEAU:

$30 LDINQ

$30 LDBŸTË

$31 RDCÔNT

S31 LDCONT

= load inquiry, low $32
LDREQ = load request

= load byte, low
$32

_____ = read control, low
WRPRCT = write protect flag, low $33
TRACK0 = track zéro flag, 1ow
READY = ready flag, low
SYNFLG = synchro flag, low
ADRSECTOR = 4 bit sector address
________ = write control, low
DRISEL 1 to 3 = drive sélection, low
STPDIRIN = step direction, low
MOTORON = motor on, low
INT0N = sector interrupt on, low
V/RITE^OD= control 1 er in write mode, low
wRITEGATE= drive in write mode, 1ow

RDINQ = read inquiry, low
RDREO = read request

STPCMD = step command, low

RDBYTE = read byte, low

����������	������	���

���

LE DISQUE SOUPLE

Pochette
en cartô

Fente du
Write
Protect

disque

1 secteur

couche de

de téflon

trou
d ' index

trou de
secteur

Sens d'introduction
dans le drive

Comme vous pouvez le voir sur ce dessin, le disque souple est enfermé dans une
pochette dont la surface intérieure est recouverte d'un tissu à base de téflon
qui donne un frottement minimum, tout en nettoyant le disque.

Le disque est divisé en 16 secteurs égaux, repérés chacun par un trou percé dans
le disque souple. Un trou supplémentaire percé entre deux trous de secteur indique
l'origine.■C'est' le trou d'index. La pochette a également un trou qui permet à
un système opto-électronique de lire les secteurs et l'index. Une autre ouverture
de la disquette permet à la tête de 1ecture/écriture d'être en contact avec le
disque et de se déplacer radialement sur ce dernier. On obtient ainsi une surface
subdivisée en pistes (déplacement de la tête), elles-mêmes divisées en secteurs
(trou de secteur).

Le disque tourne dans sa fourre à 300 tours/minute. Grâce à ce mouvement, ainsi
qu'à celui de la tête, on peut donc atteindre n'importe quel secteur.
L’index, la lecture des trous de secteur, la gestion intelligente du déplacement
de la tête, nous permettent de donner à chacun de ces secteurs une adresse bien
précise, On peut donc enregistrer, puis retrouver facilement différentes infor­
mations à différentes places sur le disque.

����������	������	���

���

La position latérale du trou de lecture des secteurs et de l'index permet de
détecter une introduction à l'envers. Si la fente du "write protect" est
recouverte d'un élément non transparent, les circuits d'écriture du drive sont
inhibés, interdisant ainsi toute écriture accidentelle.

RECOMMENDATIONS: il est vivement recommandé de manipuler les disquettes avec
précaution.

Prendre bien garde à les protéger de la poussière et de
la présence d'un champ magnétique élevé (haut-parieur, TV).
Ne jamais les tordre. Evitez de les laisser dans le drive,
mais rangez-les plutôt dans leur fourre , bien enfermées
dans une boite.

Ecrivez sur vos étiquettes de préférence avant de
les coller sur la disquette.

Ces précautions élémentaires vous éviteront bien des ennuis.

ORGANISATION DU DISQUE

Le "directory" occupe les trois permiers secteurs, piste 0.
Depuis le 4ème secteur, piste 0, jusqu'au 16e secteur , dernière piste
(numéro 40 à 77 selon les drives), la place est disponible pour les fichiers.

MW

Capacité:
16 x 77 x 256 bytes

=315 kbytes

On emploie l'organisation d'écriture contiguë sur le disque.
Admettons que nous écrivons un fichier (de longueur 200 blocs ou secteurs)
depuis le secteur 4, piste 8. La tète va écrire sur les secteurs 5 à 16
(piste 8), puis cette piste étant pleine, va passer à la piste 9.

����������	������	���

���

8.2 SOFTWARE FLOPPY DISQUE

DESCRIPTION DES ALGORITHMES

. LECTURE DE BLOCS: La lecture d'un bloc donne lieu à deux vérifications.
La première est la correspondance de l'adresse de piste enregis­
trée sur le disque avec la mémoire de la position de la tête.

Le deuxième est la comparaison du checksum enregistré sur le disque
avec celui calculé à la lecture.

Indifféremment pour l'une ou l'autre de ces vérifications, on
effectue au maximum dix tentatives de lecture d'un bloc signalant
à chaque fois une erreur. Si c'est le cas, on considère que la
lecture est impossible et le travail ayant engendré cette lecture
est avorté, avec un message d'erreur de lecture.

Lorsque l'on demande la lecture de plusieurs blocs, le hardware
permet une lecture consécutive de ces blocs. Donc, lors de la
lecture d'un fichier par tranche, on a intérêt à lire des tranches
qui soient les plus longues possible.

. ECRITURE DE BLOCS: L'écriture de blocs sur le disque s'effectue selon le
principe du "read after write" au niveau de la piste. Imaginons
qu'un ordre d'écriture nécessite 4 pistes. On effectuera la lecture
de contrôle avant de changer de piste, ou si le travail est terminé.
Si une erreur est détectée lors de la lecture de vérification, on
récrit à nouveau les secteurs que l'on a précédemment écrits sur
cette piste. Cette opération peut être répétée au maximum 10 fois.
Après quoi on considère que l'écriture est impossible et le travail
ayant engendré cette écriture est avorté avec un message d'erreur
d'écriture. Dans le cas normal (pas d'erreur !), on obtient avec
cette méthode la vitesse d'écriture la plus rapide possible, soit
la moitié de la vitesse de lecture.

La remarque quant à la longueur des tranches (haut de la page) est
donc aussi valable.

. COMPRESSION D'UN DISQUE: On emploie la méthode suivante: déplacement du
segment compris entre deux trous de la valeur du premier trou.
Ceci étant recommencé jusqu'à ce quel'on atteigne la fin du disque.

EXEMPLE:

Départ

(ségment 2 [' trou 1 Segment 2 [ÿ,trou,2 | segment 3 Itrouil

1ère étape
(segment 1 (segment 2| trou s„-+-2 (segment 3

Arrivée

(segment

/

����������	������	���

���

DESCRIPTION DES APPELS SYSTEME FLOPPY DISOUE

GENERALITES

FORMAT DES SECTEURS:

•PREAMBLE: cette zone est composée de 50g bytes de synchronisation.
Elle est utilisée en lecture par la microprogrammation du
contrôleur pour se synchroniser.

CARACTERE DE SYNCHRONISATION: il s'agit d'un 377g qui est détecté par le
contrôleur pour la synchronisation mot.
Lorsqu'il est lu par le contrôleur, celui-ci active le flag SYNFLG dans
le SCONT et commence la lecture des informations écrites sur le
disque.

ADRESSE DE LA PISTE: ce premier byte sert, en lecture, à vérifier que l'on est
bien sur la piste désirée.

DATA: cette zone contient l'information mémorisée dans ce secteur sous
forme de 256 bytes. C'est ce que l'on appellera communément par la
suite un bloc.'

CHECKSUM: ce byte, enregistré sur le disque lors de l'écriture, est généré
par une somme dés 256 bytes de data.
En lecture il permet de détecter une erreur de lecture.

POSTAMBLE: cette zone est générée automatiquement par le contrôleur.
Il s'agit d'environ 50g bytes 0.
La génération automatique de cette zone par le contrôleur permet
l'écriture consécutive de plusieurs secteurs contigus entre eux.

3.2-2

����������	������	���

���

ORGANISATION DU DIRECTORY

DATE |

Total 32 fichiers

NOM DU FICHIER: 8 caractères ASCII au maximum. Le premier
obligatoirement être une lettre.

caractère doit

EXTENSION: 2 caractères ASCII au maximum, suivis d'un terminateur reconnais­
sable.

TERMINATEURS: les terminateurs reconnus sont: espace, retour de chariot,
tabulateur, barre oblique à droite, byte 0 et [

ADRESSE DISQUE DE DEBUT ET FIN: les 4 bytes qui suivent l'extension indiquent
les adresses (en blocs) où conmence le fichier sur le disque
et où il finit.

ATTRIBUTS DU FICHIER: ce byte contient les
en tout temps l'état de ce fichier

| , ,0,C ,P. R,H | vrai = 1
faux = 0

attributs du fichier et donne
(ouvert, fermé, protégé, etc.)

W = fichier protégé en écriture
R = fichier protégé en lecture.
P = argument W et R protégé
C = fichier ouvert en écriture
0 = fichier ouvert en lecture

REMARQUES:

W et R sont gérés par l'appel 7CHATR.
P est géré par un appel séparé 7CHATPT, ceci pour une plus grande
souplesse d'utilisation de'ces attributs.

. . nom,

8.2-3

����������	������	���

���

- C indique que le fichier est ouvert en écriture, tandis que 0 indique
qu'il est ouvert en lecture. En fait, 0 est un état virtuel dans 1e
directory. L'image vraie de l'ouverture en lecture est le byte comp-
teur OPEN. Ce bit n'est activé en fonction du compteur OPEN que dans
les routines de test des attributs ou dans l'appel 'ARGS.

COMPTEUR OPEN: Ce byte indique le nombre d'ouvertures de ce fichier en lecture.
Zéro signifie qu'il est fermé.

BYTES VALIDES: C est le nombre de bytes valides dans le dernier bloc
du fichier.

end of file-.
Il permet de gérer correctement le message

DEBUT ET START: ces 4 bytes donnent la position mémoire d'un fichier
objet et son adresse de départ. Le début égal à zéro indique
qu'il ne s'agit pas d'un fichier objet.

DAiE: date de création du fichier

����������	������	���

���

ORGANISATION DES F.I.T (file information table)

Il existe deux FIT identiques pour les fichiers disque:

. une pour les fichiers ouverts en mode écriture (create),

. une pour les fichiers ouverts en mode lecture (open)

et une FIT spéciale pour les périphériques.
O

FIT FICHIERS DISQUE

Répertoire
software 5

CD

rü

Total 20 bytes

Total 8 fichiers

ADRESSE DISQUE EN COURS: les deux bytes suivant l'extension donnent-
la fin actuelle du fichier, ou,si l'on préférera prochaine
adresse disque disponible pour ce fichier

ADRESSE DISQUE DE FIN: ces deux bytes donnent
la réservation pour ce fichier.

l'adresse disque limite de

REPERTOIRE HARDWARE: c'est l'adresse du drive où se trouve le fichier

REPERTOIRE SOFTWARE: ces deux fois deux bytes donnent l'adresse disque
du début et de la fin du répertoire software. Lorsqu'aucun
répertoire software n'est utilisé, ces adresses correspondent
au début et à la fin du disque

BYTES VALIDES: c'est le nombre de bytes valides dans le dernier bloc
dans le cas d'un fichier ouvert en lecture.

8.2-5

����������	������	���

���

FIT FICHIERS PERIPHERIQUES

I—|—*—J- = 1 élément de LOCFIT

| ^adresse du drive

*- byte de contrôle

REMARQUE: La longueur de LOCFIT est fonction du nombre de périphériques traités.

Cette FIT, mémorisée en ROM, est transférée en RAM à l'initialisation.
Elle permet d'effectuer la gestion des périphériques.

BYTE DE CONTROLE: ce byte sert à la fois de No de canal et de byte d'attribut
du fichier. Il a 1'organisation suivante:

f”toujours à 1, indique qu'il s'agit d’un canal local

W = fichier protégé à l'écriture
R = fichier protégé à la lecture
C = fichier ouvert en écriture
0 = fichier ouvert en lecture
D = bytes utilisés pour différencier les fichiers périphériques

entre eux

ADRESSE DRIVER: c'est l'adresse du driver correspondant.
La distinction des travaux à effectuer soit à l'ouverture, soit à la
fermeture, ou le travail courant est fait
manière suivante:

au niveau des drivers de la

Entrée dans le driver carry clear A=0
A^0

travail d'ouverture
travail de fermeture

Entrée dans le driver carry set Travail courant

8.2-6

����������	������	���

���

8.3 SAMOS, SMAKY AND MICRO-FLOPPY OPERATING SYSTEM: DESCRIPTION GENERALE

8.3 DESCRIPTION GENERALE

SAMOS est un petit "operating System" d'une taille d'environ 4 kbytes rési
dant depuis l'adresse 10000 du SMAKY6. Il permet la gestion de fichiers
disques et fichiers périphériques, sous la forme d'appels utilisant le
restant 20 du SMAKY6.

Les appels SAMOS auront donc la forme:

?APPEL_SAMOS = No appel * 400 +RST 20

Par exemple:

2CREATE = 23*400+327

Les caractéristiques fondamentales de SAMOS sont: 1'autoparamétrisation, l'organisa­
tion contiguë, deux types d'accès au fichiers et des indirections sur des routines
de base.

8.3.1 L'autoparamétrisation

A l'enclenchement du SMAKY6, le programme contenu dans la ROM fantôme
charge le software de base (SYSTEM et SAMOS) en mémoire vive et exécute
le bootstrap. C'est durant l'exécution de ce bootstrap que SAMOS va
s1autoparamétriser. Il va d'abord s'annoncer sur l'écran par SAMOS rév.-vers.
Il réserve ensuite une place pour ses différents buffers de travail, ses
FIT (file information table) et ses paramètres en RAM. Il va ensuite
procéder aux initialisations des RESTART qu'il utilise, soit le 10 pour le
hardware et le 20 pour le software.

L'autoparamétrisation proprement dite consistera à reconnaître le nombre de drives
actifs sur l'installation. Ceci est fait lors de la phase d'initialisation des,
drives. Cette initialisation consiste à amener la tête de lecture des drives en
piste 0 et d'initialiser le compteur de pistes en mémoire à zéro. Les adresses
de drive où ce travail ne peut pas être effectué sont considérés comme invalides
et ne seront pas reconnues u1térieurement par le système.
SAMOS signale ces adresses en envoyant sur l'écran la remarque NO DXn, n étant
l'adresse non reconnue. On peut donc ainsi changer le nombre de drives sans
modifier SAMOS.

8.3.2 APPEL DU PROGRAMME CLI.SY

Nous venons de voir tous les travaux d'initialisation du bootstrap. Cependant
à 3a fin de ces initialisations, cet ordre ne se termine pas en revenant au
SYSTEME. Il cherche à charger depuis le disque tout ù'aoord un’programme''
s'appelant ST.SY (programme de start-up). Si ce programme n'existe pas,
il tente alors de charger le programme CLI.SY. En cas d'insuccès, il
revient alors au SYSTEME en donnant le message ERROR suivi du numéro de
l'erreur rencontrée.

Le programme ST.SY permet d'intercaler une fonction supplémentaire avant
avant le chargement du CLI.SY, par exemple, chargement de MATPAC.SY ou affi
chage d'un texte message par exemple.

Le programme CLI.SY (command line interpréter) permet de faire effectuer
à SAÎ40S toutes sortes de transactions sous forme de ligne de commande
(voir le mode d'emploi de CLI.SY).

8.3-1

����������	������	���

���

8.3.3 ORGANISATION CONTIGUË

SANOS est basé sur une organisation contiguë. Ceia veut dire que les blocs que
1 on écrit sur le disque sont contigus entre eux. Contrai rement à l'accès aléatoire
où l'on saute de bloc vide à bloc vide, ceux-ci n'étant pas forcément contigus,
on écrit dans un espace libre réservé à l'avance par tranches de blocs contigus
entre eux, les tranches étant elles-mêmes contiguës jusqu'à la fin de l'espace
libre réservé.

Organisation aléatoire: on écrira dans 1,2,3 etc. blocs successivement libres.

résiliation

3 4.5. 6

Organisation contiguë: on écrira dans 1,2,3, etc. blocs contigus libres dans la
réservation préalable.

On voit donc que l'organisation choisie a l'inconvénient de nécessiter une
réservation préalable. Par contre, ce type d'organisation permet une plus grande
rapidité d'accès aux informations. Ce critère fut décisif étant donné la relative
lenteur des accès disque avec des micro-floppy.

Les accès

Comme les micro-floppy sont la mémoire de masse du système,
tirer le meilleur parti possible, du point de vue rapidité.

il est important d'en

On peut utiliser deux types d'accès:

L'accès rapide: cet accès se fait par blocs physiques du disque (400g) directement
de disque à mémoire utilisateur ou vice versa.
Cet accès permet de tirer le meilleur profit de l'organisation
contiguë décrite précédemment, puisque, dans le même passage
de lecture (même tour de disque) on arrive à traiter successi­
vement chaque bloc.
La lecture de tous les secteurs d'une piste soit 16.x 256. = 4096.
bytes nécessite 200ms. Cependant cet accès, par le fait qu'il
travaille sur des blocs physiques du disque est plus difficile à
utiliser du point de vue software.

. 1'accès lent: cet accès se fait par byte ou par lignes.
Il utilise des buffers intermédiaires de 1 bloc. Il ne peut
donc lire sur le disque dans le même passage (même tour)
qu'un bloc à la fois. Il est donc 16x plus lent que l'accès
précédent.
Par contre, il est complètement affranchi des contraintes
physiques du disque, et permet de travailler totalement en
fonction des informations que l'on accède sur le disque.

8.3-2

����������	������	���

���

8.3.5 Indirections sur les routines de base

Différentes indirections sur des routines de base permettent, pour des
cas bien particuliers, de s'affranchir totalement de la structure et des
contraintes de SAMOS et d'accéder directement sur le disque soit en écriture
soit en lecture. Ces indirections sont décrites en détail plus loin.

8.3.6 Les limites de SAMOS

• Les limites de SAMOS sont les suivantes.
Il peut reconnaître jusqu'à trois drives "on line".

REMARQUE: il faut cependant noter que dans la version standard actuelle,
SAMOS ne reconnaît que deux drives, car la ligne du troisième
drive a été utilisée pour gérer le signal HEADLQAD qui
permet une optimalisation de l'accès inter-drive pour les
drives simple face. Pour les drives double face, cette ligne
estutilisée par la ligne de commande de la 2ème tête du drive.

Chaque répertoire peut avoir un maximum de 32 fichiers.

SAMOS dispose de 4 buffers d'entrée/sortie disque; les FIT (file information
table) d'écriture ou de lecture peuvent gérer chacune 8 fichiers disque
simultanément. Le nombre total de fichiers disque qui peuvent être traités
simultanément dépend de la saturation, soit des FIT, soit des buffers.

Par exemple, on peut traiter simultanément 8 fichiers disque en écriture,
ouverts en accès par blocs, et 8 fichiers disque en lecture, ouverts en
accès par blocs, puisque ce type d'accès n'utilise pas les buffers I/O.

FIT écriture pleine

FIT lecture pleine

Buffers inutilisés

Par contre, si l'on passe à l'accès par byte ou ligne, on ne pourra avoir
simultanément que 4 fichiers ouverts dans ce type d'accès. Dans l'exemple
ci-dessous nous avons deux fichiers ouverts en écriture et 2 en lecture.

libre par bloc uniquement

I

. ;• . • ' - ■ FIT écriture partiellement pleine

libre par bloc uniquement
,•• ~ : - FIT lecture

; ‘ ’ partiellement pleine

Buffers tous utilisés

On pourrait par contre rajouter à la configuration ci-dessus encore six
fichiers en lecture en accès par blocs et six fichiers en écriture en
accès par blocs. Toutes les combinaisons intermédiaires sont évidemment
permi ses.

8.3—3

����������	������	���

���

8.3.7 Les fichiers périphériques

Les appels système de SAMOS permettent d'accéder non seulement les fichiers
disque, mais également des fichiers périphériques.

On peut accéder à ces fichiers périphériques indifféremment avec l'accès par
bloc ou l'accès par byte ou ligne.

Dans les ordres qui permettent de travailler avec les périphériques, on accède
à ceux-ci en remplaçant le REP: par Snom_du_périphérique.

Les périphériques décodés sont les suivants :

SPR (paper reader)
SPP (paper punch)

$PI (parallel in)
SPO (parallel out)

$MI (modem in)
SMO (modem out)

SLP (line printer)

SKEY(clavier)

$DIS(display)

USART 4
USART 4

interface
interface

USART 6
USART 6

input
output

// input
// output

i nput
output

output Overlay sur fichier driver LP.SY

i nput

output

On peut avorter ou terminer la transmission avec un périphérique
en pressant sur la touche ÇKILL)

Le périphérique envoie alors un "end of file" ’à SAMOS. Dans le casi de
transmission avec un périphérique en entrée (SPR et $PI), lorsque la trans­
mission est terminée (plus de son dans le haut-parleur) on signale normale­
ment la fin en pressant Ç KILL) , ceci provoque la fin de l'exécution de
l'ordre (fermeture des fichiers). Dans le cas de transmission avec un péri­
phérique en sortie il n'y a normalement pas lieu de presser une touche, puisque
le "end of file" sera donné par le fichier que l'on transmet. On peut cependant
avorter la transmission en pressant (KILL) •

8.3-4

����������	������	���

���

8.3.8 Principes généraux des appels SAMOS

Comme pour les appels SYSTEME, on est automatiquement "interrupt on" au
retour d'un appel SAMOS.

Les appels SAMOS affectent toujours les registres A et F. Au retour d'un appel
SAMOS, le carry est utilisé pour signaler une erreur éventuelle.

Un retour carry set indique qu'une erreur s'est produite, le numéro de cette
erreur se trouvant alors dans le registre A. Un retour carry clear indique
évidemment un bon déroulement de l'appel.

La plupart des appels SAMOS ont des paramètres en entrée et en sortie.
La restitution des paramètres en sortie peut être liée à la condition du Don
déroulement ou non de 1 'appel SAMOS. D'une manière générale, les registres, •
à part A et F, qui ne sont pas utilisés pour rendre des paramètres en sortie
ne sont pas affectés. Les registres prévus pour ne rendre des paramètres qu'en
cas de bon déroulement de l'appel ne seront affectés que si 1'appel s'est
effectué correctement. Dans le cas inverse (paramètres de sortie en cas d'erreurs
ce principe joue également.

Lors de l'exécution d'un appel SAMOS qui nécessite un accès disque, SAMOS
supprime l'interruption 5QHz et se met en mode alpha uniquement.

Ceci veut dire que le clavier n'est plus balayé durant l'accès disque, et l'écran
graphique plus visible.

Pour garantir le bon fonctionnement des accès disque, l'utilisateur qui aurait
une configuration de système utilisant une autre interruption hardware (exemple:
autre prériphérique générant des interruptions) doit supprimer cette autre
interruption avant d'effectuer un appel SAMOS nécessitant un accès disque.
Ceci afin de garantir la plus haute priorité aux accès disque.

8.3.9 Organisation des disquettes

Chaque disquette peut contenir des fichiers répertoires, qui peuvent contenir
chacun 32 fichiers. Parmi ces fichiers, il peut y avoir également des fichiers
réoertoires qui peuvent contenir aussi d’autres fichiers répertoires etc..
On oeut donc créer une structure arborescente—de—répartoires—et—de
sous—répertoires.

DXO: J rép "hardware"

TOTO: TUTU : T
/ \ . / \ [rép "software"

BOBO: BUBU: BOBO: BUBU:)
etc.

Traduction du schéma ci—dessus:

sur la diquette en DXO: il y a notamment deux fichiers répertoires TOTO.DR et
TUTU.DR qui contiennent chacun entre autres deux fichiers sous-répertoires
BOBO.DR et BUBU.DR (l'utilisation du même nom n'est pas interdite).

8.3.5

����������	������	���

���

8.4 LES APPELS SAMOS

8.4.1 DESCRIPTION GENERALE DES PARAMETRES

8.4.1.1 Pointeur au nom

Par pointeur au nom, on entend un pointeur d'une chaîne de caractères ASCII,
qui peut contenir les informations suivantes cour un fichier disque:

• lien du répertoire
. nom du fichier
. extension du nom de fichier disque
. réservation de blocs

Cu simplement pour un périphérique:

. nom du périphérique.

Cette chaîne ASCII peut avoir au début des espaces ou des tabulateurs, ils
seront automatiquement sautés.

Elle doit par contre être terminée par un des caractères suivants: SPACE,
TAB, CR, SLASH, ZERO.

Si la chaîne ASCII contiént plusieurs informations, elles ne devront pas être
séparées par des caractères non significatifs, mais obligatoirement mises
bout à bout. Les lettres minuscules non accentuées sont acceptées mais transformées
automatiquement en majuscules par le système. La même information peut donc être
indifféremment en minuscules ou en majuscules.

Lien du répertoire: On distingue deux types de répertoires:
au plus bas niveau du système les répertoires hardware qui ont la forme DXn:
n étant de numéro du drive (0 ou 1) que l'on désire accéder. Lorsque cette
information est omise, SAMOS prend DX0: par défaut.
Les répertoires software créés par l'utilisateur, qui sont des fichiers
avec l’extension spéciale .DR
L'accès à ces répertoires à la forme REP: REP étant le nom du
fichier répertoire. La syntaxe de ce nom est donc celle d'un nom de fichier
(voir ci-dessous).

On peut créer des répertoires à l'intérieur d'un répertoire, ce qui permet
d'obtenir une structure arborescente (voir § 8.3.9).
Le lien d'un répertoire pourra donc avoir la forme suivante DX1:TOTO:TITI:
On accède dans cet exemple au sous-répertoire TITI.DR dans le répertoire
TOTO.DR sur la disquette du drive DX1:

Nom du fichier disque: il est formé d'un maximum de 8 caractères.
Le premier doit obligatoirement être une lettre, les suivants
des lettres cu des chiffres.

Extension du nom du fichier disque: elle est formée de deux caractères au
maximum qui peuvent être soit des lettres, soit des chiffres.
Elle est précédée obligatoirement par un point.
Elle peut être omise. L'extension sert généralement à caractérise)
1e genre de fichier.

Exemple:
Le fichier source TOTO qui se trouve sur un disque inséré
dans le drive d'adresse 0 sera parfaitement caractérisé par
les chaînes ASCII suivantes:

.ASCII /ZTAB>4SPACEW0:TOTO.SRCCR>/

.ASCIZ /<TAB>TOTO.SR/
.ASCIZ /toto.sr/
etc.

3.4-1

����������	������	���

���

L'extension .MC, réservée aux MACROS, est reconnue pas SAMOS, et elle est
"reset protected" à la lecture. En effet, si un programme, appelé par une
MACRO effectue un appel RESET, il ne faut pas que le fichier MACRO soit
fermé par cet appel, sous peine d'avorter la suite de l'exécution de la
MACRO.

Réservation de blocs: pour les noms de fichier en création exclusivement
on peut accoller une réservation de blocs entre
crochets.

Cette réservation a le même effet que celle passée
par le paramètre d'entrée correspondant (voir 8.4.1.2
et appel CREATE ou CRBLK).

Cependant, la réservation entre crochets n'est
prise en considération que si le paramètre d'en­
trée de l'appel de création de ce fichier est
égal à zéro.

Exemples de réservations entre crochets:

TOTO.SR Cl00 J

TOTO £2-8]

TOTO. LS (1281291.
ignoré pris en compte

TOTO.SRfO]
î__réservation par défaut,

soit la plus grande place sur deux

Non du périphérique: il est simplement formé des lettres caractérisant le
périphérique précédé du signe $.

Pour les appels SAMOS- qui effectuent un travail au niveau d'un rëper
toire, et non pas au niveau d'un fichier, il n'est pas nécessaire (mais pas
interdit!) de spécifier un nom de fichier. Seule l'information "lien du répertoire"
sera prise en compte. Dans le cas du répertoire hardware DX0:. nous savons que cette
information-peut être omise. Ainsi, dans ce cas précis, il suffirait que le
pointeur au nom soit sur un terminateur (CR, SLASH, ZERO).

8.4.1.2 Numéro de canal

La création ou l'ouverture (lecture) d'un fichier nécessite un nom. Si l'on
crée un fichier, ce sera le nom que l'on désire attribuer à ce fichier; si
l'on ouvre un fichier, ce sera le nom qui avait été donné à la création.

Si l'on crée, ou l'on ouvre un fichier, c'est pour y.écrire ou y lire des
informations. Pour faire ces opérations, il faudra à nouveau caractériser
ce fichier, puisque l’on peut avoir plusieurs fichiers ouverts ou créés
en meme temps.

Pour ce faire, SAMOS, au moment de la création ou de l'ouverture de ce
fichier, attribue un numéro de canal qu'il rend à l'utilisateur. C'est dès lors
ce numéro qui caractérisera le fichier et qui sera utilisé pour effectuer les
opérations d'écriture, de lecture et l'opération finale de fermeture.

Il est plus facile de manipuler un numéro que de travailler avec un nom.
D'autre part, comme un numéro de canal est toujours non nul, on peut utiliser
le zéro pour signaler que le canal n'est pas ouvert (mise à zéro préalable
et à la fermeture des positions mémoire utilisées pour mémoriser ces numéros
de canaux).

8.4-2

����������	������	���

���

Format du No de canal

Le numéro de canal contient d'autre part des informations qui caractérisent le
fichier concerné et qui peuvent être testées par l'utilisateur.

Numéro de canal fichier disque HAxxxxx] (1 byte)

0=fichier disque

0=1ecture

0=accès par bloc

1 =écr i ture

1 =accès par byte ou 1 igné

numérotation distinctive

Numéro de canal fichier périphérique

W = fichier protégé à l'écriture

R = fichier protégé à la lecture

C = fichier ouvert en écriture

0 = fichier ouvert en lecture

D = bit de distinction

1 D 0 0 C D R W (1 byte)

8.4.1.3 Nombre de blocs à réserver

C'est le nombre de blocs physiques du disque (400g) en binaire que l'on
désire réserver à un fichier que l'on crée. On peut obtenir une réservation
par défaut en mettant ce paramètre à zéro. A ce moment SAMOS réservera la
moitié de la plus, grande place vide.

Dans le cas contraire, SAMOS effectuera la réservation dans le plus petit-
trou possible.

8.4.1.4 Pointeur en mémoire

Ce pointeur est sur la première position de l'endroit où, selon que l'on lit •
ou que l'on écrit, on va délivrer ou chercher l'information qui fait l'objet du
transfert.

8.4.1.5 Numéro de canal
Ce paramètre est rendu par SAMOS après l'ouverture ou la création d'un fichier.
Il est utilisé par la suite pour communiquer avec le dit fichier.

8.4-3

����������	������	���

���

8.4.1.6 Nombre de bytes à lire ou à écrire

Comme nous l'avons vu, SAMOS, peut travailler avec un type d'accès rapide par
blocs physiques du disque. Cependant dans ce type d'accès, l'unité de travail
est le bloc, soit 400g. Il est rare que les fichiers avec lesquels nous
allons travailler aient une taille multiple d'un nombre de blocs. Aussi, si
nous écrivons ou lisons un fichier par ce type d'accès, il faudra respecter les
deux règles suivantes:

. En accès par blocs, on lira toujours un fichier par tranches mu 1 tiple de 400g

. En accès par blocs en écriture, seule la dernière tranche écrite pourra ne pas
être multiple de 400g.

Pour l'appel UPDATE, spécifiez toujours de préférence un multiple de 400g,
surtout à l'écriture car on écrira toujours le nombre supérieur de blocs.
La taille d'un fichier (nombre de bytes dans le dernier bloc) n'est pas
modifiée (et pas modifiable) par l'appel UPDATE. En effet, on accède en
UPDATE dans-un fichier avec une ouverture en lecture par bloc (OPEBLK).
Sa taille a été définie une fois pour toutes lors du CLOSE qui a suivi
sa création.

Si l'on utilise l'accès par byte, on est évidemment libre des contraintes décrites
ci-dessus, mais la vitesse d'accès sur le disque est plus lente.

8.4.1.7 Nombre de bytes lus ou écrits

Ce paramètre est rendu à la fin d'un travail de lecture ou d'écriture. En accès
par blocs en écriture, ce paramètre est toujours un multiple entier de 400g
correspondant aux blocs effectivement écrits sur le disque. Lorsque la dernière

.tranche écrite dans le fichier n'est pas multiple de 400g, le nombre de bytes
valides dans le dernier bloc est mémorisé par SAMOS, et sera écrit dans le
directoire au moment de la fermeture de ce fichier. Le nombre de bytes écrits
étant alors le multiple supérieur de 400g du nombre de bytes à écrire spécifié
en entrée.

Par contre, en accès par blocs en lecture, au moment du "end of file", ce para­
mètre nous donne le nombre de bytes valides par tranche lue, qui n'est pas
forcément un multiple de 400g. Il est important de savoir que par ce type
d'accès, le nombre de bytes effectivement tran^érés est le multiple supérieur
de 400g au nombre de bytes spécifié. En d'autres mots, le dernier bloc est trans-
féré intégralement et peut contenir des bytes non significatifs.

Si l'on utilise l'accès par byte, ce paramètre correspond simplement au nombre de
bytes effectivement lus ou écrits.

Au sujet de ce paramètre de retour, lisez également la description des messages
d'erreur "end of file" et "file end overflov/".

����������	������	���

���

8.4.1.8 Adresse de début, adresse de start

Le fichierque l'on crée sur le disque peut contenir un programme sous forme d'une
image mémoire. Dans ce cas, il faut que SAMOS puisse connaître où se situe le
programme en mémoire, c'est-à-dire l'adresse de début, et où commence son exécution
c'est-à-dire l'adresse de start.
O 1-i SOn^ s5écifiés au moment de la fermeture du fichier (appel

USE) et sont mémorisés dans le directoire. f
sont remis à zéro. Pour l'appel RESET ces paramètres

Si le fichier que I on traite n'est pas un programme sous forme d'une image
mémoire, la valeur du paramètre 'àdresse de start' est indifférente; par contre
l'adresse de début doit valoir zéro. SAMOS saura ainsi que ce fichier ne
contient pas un programme image mémoire exécutable et il pourra ainsi assurer
une protection en cas de tentative de chargement et d'exécution de ce fichier.

8.4.2 DESCRIPTION DES MESSAGES D'ERREUR

Les messages d'erreur en clair sont contenus dans le fichier ER.SY.
L'appel SAMOS 7ERROR (voir 8.4.28) utilise ce fichier pour traduire
le message.

No 1 Fichier protégé à l'écriture (write protect file)

Ce message signifie que le fichier traité est protégé à l'écriture.
On reçoit ce message si l'on tente de tuer ce fichier, ou de modifier son nom.

No 2: Fichier protégé à la lecture (read protect file)

Ce message- "fichiier protégé à la lecture" apparaît si l'on tente d'ouvrir ce
fichier, de charger et d'exécuter ce fichier.

No 4: Fichier permanent (permanent file)

Ce message signifie que les arguments du fichier traité sont protégés.
On reçoit ce message si l'on tente de changer les attributs du fichier.

No 5: Ligne trop longue (line too long)

Ce message apparaît lorsque la ligne traitée par l'un des appels WRLINE ou RDLINE
est plus longue que 256 caractères.

No 6: Fin du fichier (end of file)

Ce message signifie que l'on a atteint la fin du fichier en lecture.
On reçoit ce message lorsque le nombre de bytes à lire correspond exactement,
ou dépasse, le solde de bytes à lire dans le fichier. Le paramètre de retour
"nombre de bytes lus" (8.4.1.6) donne alors le nombre de bytes valides.

No 7: Fichier plein (file end overflow)

Ce message signifie que l'on a tenté d'écrire par dessus la fin d'un fichier en
écriture. Le paramètre de retour "nombre de bytes écrits" (8.4.1.6) donne le
nombre de bytes effectivement écrits.

����������	������	���

���

No 10: Ouvert en écriture

On reçoit le message "fichier ouvert en écriture" si l'on tente de faire
toute autre opération qu'une écriture ou une fermeture de ce fichier.

No 11: Fichier existant (file already exist)

Ce message signifie que le nom du fichier traité existe déjà dans le
répertoire. On reçoit ce message si l'on tente de créer un fichier sous
un nom qui existe déjà, si l'on tente de renommer un fichier avec un nom
qui existe déjà.

No 12: Fichier inexistant (file does not exist)

Ce message signifie que le nom du fichier traité n'existe pas dans le
répertoire. On reçoit ce message si l'on tente d'ouvrir, de renommer,
de changer les attributs ou de tuer un fichier qui n'existe pas.

No 13: Nom illégal (illégal filename)

Ce message signifie que le nom ou l'extension du fichier traité ne
respecte pas la syntaxe (8 caractères au maximum, premier caractère
obligatoirement une lettre, pas de signes spéciaux, extension maximum
deux caractères, lettres ou chiffres).

No 14: Réservation illégale (Illégal réservation)

Ce message signifie que la réservation donnée entre parenthèses carrées
ne respecte pas la syntaxe. Exemples: lettre au lieu de chiffre, oubli
de la parenthèse de fermeture, etc.

No 16: Fichier non exécutable (cannot load file)

Ce message signifie que le fichier traité ne contient pas un programme image
mémoire exécutable (l'adresse de début dans le directoire égale à zéro).
On reçoit ce message si l'on tente de charger et d'exécuter ce genre de fichier.

No 17: Hors du fichier (out of file)

Ce message concerne uniquement l'appel SAMOS UPDATE. Il signifie que le
numéro de bloc spécifié est en dehors des limites du fichier.

No 20: Ouvert en lecture (file in use for reading)

Ce message signifie que le fichier traité est ouvert en lecture.
On reçoit ce message si l'on tente de faire toute autre opération qu'une
ouverture, une lecture ou une fermeture de ce fichier.

No 21: Répertoire inconnu (unknown device)

Ce message signifie que l'on tente d'accéder à un répertoire hardware ou
software qui n'existe pas.

No 22: Erreur de canal (channel error)

Ce message signifie que le numéro de canal
ou que ce canal n'est pas ouvert.

que l'on a spécifié n'existe pas

No 23: Fichier(s) ouvert(s) (file(s) in use)

Ce message signifie qu'il y a des fichiers ouverts. On reçoit ce message si
l'on tente d'effectuer une compression de disque alors que les fichiers sont
encore ouverts.

8.4-6
K

����������	������	���

���

No 24: Plus de canal libre (ail channels in use)

Ce message veut dire que l'on a saturé les FIT (file information table)
ou les buffers input/output (voir les limites de SAMOS, S 8.3.6).
On reçoit ce message si l'on tente d'ouvrir ou de créer un fichier alors
qu'il n'y a pas de canal disponible.

No 25: Répertoire plein (directory full)

Ce message signifie que le répertoire contient déjà 32 fichiers.
On reçoit ce message si l'on tente d'en créer un nouveau.

No 26: Disque-plein (disk full)

Ce message veut dire que l'on ne peut pas réserver la place demandée sur le
disque. Ceci signifie que le nombre de blocs à réserver est supérieur
au nombre de blocs du plus grand trou dans le répertoire hardware ou software.

No 30: Floppy hors service (device timeout)

Ce message veut dire que l'adresse de ce drive est reconnue, mais qu'en
revanche il ne fonctionne pas.

No 31: Disque protégé (write protect tab set)

Ce message signifie que le disque a un cache de protection à l'écriture.
On reçoit ce message si l'on tente, sur ce disque, de faire autre chose
qu'une ouverture, une lecture ou une fermeture de fichier.

No 32: Erreur d'écriture (write error)

Ce message veut dire que SAMOS n'a pas réussi à écrire correctement un
bloc durant un accès disque en écriture. Le travail a donc été avorté.
Cette erreur est fatale .lors d'une compression de disquette.
Lors d'une phase d'écriture dans un fichier, les blocs écrits durant cette
phase sont irrécupérables par SAMOS.

No 33: Erreur de lecture (read error)’

Ce message signifie que SAMOS n'a pas réussi a lire correctement un bloc
durant un accès disque en lecture. Le travail a donc été avorté.
Cette erreur est fatale lors d'une compression de disque.

No 34: Pas d'exécution (no starting address)

Ce message signifie que le fichier que l'on a chargé n'a pas d'adresse de
start (adresse de start égale à 1).

Le fichier ER.SY contient encore dlautres messages utilisés par d'autres
programmes. Pour le détail de leur signification, se référer aux notices
de ces programmes.

Messages du CLI

No 35: Mauvais chargement (bad load)

No 36: allocation pleine (buffer full)

8.4-7

����������	������	���

���

Messages de MATPAC (appels mathématiques)

No 37: Division par zéro (divide by zéro)
No 40: Trop grand (overflow)
No 41: Trop petit (underflow)
No 42: Nombre illégal (illégal number)
No 43: Racine négative (négative square root)
No 44: Log négatif (négative logarithm)

Messages de MATPAC (appels fichier à structure de record)

No 45: Longueur nulle (record length null)
No 46: Pas d'enregistrement (zéro record)
No 47: Fichier incompatible (no record file)
No 50: Allocation trop petite (buffer too small)
No 51: Recherche illégale (illégal search parameters)

Messages divers

Mo 110: Ordre illégal (illégal order)
No 114: Erreur système (system error)
No 115: Programme détruit (map error)

8.4- 3 APPEL 0 7CREBLK

Ouverture d'un fichier disque ou périphérique en écriture avec accès rapide
par blocs.

Paramètres d'entrée DE: pointeur au nom

BC: bloc à réserver
(BC=0 réservation par défaut)

Paramètres de sortie: A: numéro de canal

Liste des erreurs possibles pour cet appel:

1 Write pfotect file
10 File in use for writing
11 File already exists
13 Illégal filename
14 Illégal réservation
21 Unknown device
24 Al 1 channels in use
25 Directory full
26 Disk full
30-Device timeout
31 Write protect tab set
32 Write error
33 Read error

Remarques : une erreur disque à l'écriture pour cet appel est fatale car
elle concerne l'écriture du directoire sur le disque

les erreurs No 1 et 10 concernent les fichiers périphériques:
si le périphérique spécifié n'est pas un périphérique de sortie
on a l'erreur 1 ou si le périphérique est déjà ouvert, on a
1'erreur 10.

����������	������	���

���

8.4- 4 APPEL 23 ÎCREATE

Ouverture d'un fichier disque ou périphérique en écriture avec accès lent
par bytes ou par lignes.

Paramètres d'entrée: DE pointeur au nom

BC bloc à réserver
(BC=0 réservation par défaut)

Paramètre de sortie: A numéro de canal

Liste des erreurs possibles pour cet appel

1 Write protect file
10 File in use for writing
11 File already exist
13 Illégal filename
14 Illégal réservation
21 Unknown device
24 Al 1 channels in use
25 Directory full
26 Disk full
30 Device timeout
31 write protect tab set
32 Write error
33 Read error

Remarques : . une erreur disque à l'écriture pour cet appel est fatale
car elle concerne l'écriture du directoire sur le disque

Les erreurs No 1 et 10 concernent les fichiers périphériques:
si le périphérique spécifié n'est pas un périphérique de sortie
on a l'erreur 1 ou si le périphérique est déjà ouvert, on a
1'erreur 10.

8 .4-5 APPEL 35 ?CDIR

Création d'un fichier répertoire.

Paramètres d'entrée: DE pointeur au nom

BC bloc à réserver
(BC=0 réservation par défaut)

Liste des erreurs possibles pour cet appel

11
13
14
21
24
25
26
30
31
32

File already exists
Illégal filename
Illégal réservation
Unknown device
Al 1 channels in use
Directory full
Disk fui 1
Device timeout
Write protect tab set
Write error
Read error

Remarques : . pour un fichier répertoire l'extension du nom du fichier
sera obligatoirement .DR
La taille utile sera la réservation moins les trois blocs
nécessaires au directoire

. pour d'autres applications, on peut créer avec cet appel
des fichiers ayant une autre extension que .DR ou une
taille inférieure à 3 blocs. L'appel ne génère pas d'erreur
dans ces deux cas là. 8.4.9

����������	������	���

���

8 .4.6 APPEL 3 70PEBLK

Ouverture d'un fichier
blocs.

disque ou périphérique en lecture avec accès rapide par

Paramètre d'entrée: DE: pointeur au nom
c

Paramètre de sortie: A: numéro de canal

Liste des erreurs possibles pour cet appel:

2 Read protect file
12 File does not exist
13 Illégal filename
20 File in use for reading
21 Unknown device
24 Al 1 channels in use
30 Device timeout
32 Write.error
33 Read error

Remarques: Une erreur disque à l'écriture pour cet appel est fatale, car elle
concerne l'écriture du directoire sur le disque

Les erreurs No 2 et 20 concernent les fichiers périphériques :
si le périphérique spécifié n'est pas un périphérique d'entrée, on a
l'erreur 2, si le périphérique est déjà ouvert, on a l'erreur 20.

8.4.7 APPEL 24 ?OPEN

Ouverture d'un fichier disque ou périphérique en lecture avec accès lent
par byte ou par ligne.

Paramètre d'entrée:

Paramètre de sortie
—■ । !■ — — ■ *

DE: pointeur au nom

A: numéro de canal

Liste des erreurs possibles pour cet appel

2 Read protect file
12 File does not exist
13 Illégal filename
20 File in use for rèading
21 Unknown device
24 Al 1 channels in use
30 Device timeout
32 Write error
33 Read error

Remarques : Une erreur disque à l'écriture pour cet appel est fatale, car elle
concerne 1'écriture du directoire sur le disque.

Les erreurs No 2 et 20 concernent les fichiers périphériques:
si le périphérique spécifié n'est pas un périphérique d'entrée
on a l'erreur 2, ou si le périphérique est déjà ouvert, on a
1'erreur 20.

8.4.10

����������	������	���

���

8.4.8 APPEL 4 ?CLOSE

rermeture d'un fichier disque ou périphérique ouvert soit en lecture
écriture, et indépendamment du type d'accès. soit en

Paramétres d'entrée: A: Numéro de canal

Pour les
fichiers disque
uniquement

BC:
DE:

adresse de début
adresse de start fichier binaire en écriture

fichier source BC=0
DE: quelconque

Liste des erreurs possibles pour cet appel

22 Channel error
30 Device timeout
32 Write error
33 Read error

Remarque: une erreur disque à l'écriture pour cet appel est fatale, car elle
concerne l'écriture du directoire sur le disque.

,8.4.9 APPEL 6 7RDBL0C

Lecture d'un fichier disque ou périphérique ouvert en accès rapide
par blocs.

Paramètres d'entrée: A: No de canal
BC: nombre de bytes à lire (REMARQUE IMPORTANTE: toujours

multiple de 400g (voir 8.4.1.5)
DE: pointeur en mémoire

Paramètres de sortie: BC: nombre de bytes lus

Liste des erreurs possibles pour cet appel

6 End of file
22 Channel error
30 Device timeout
33 Read error

8.4-11

����������	������	���

���

8.4.10 APPEL 25 7RDBYTE ___ _

Lecture par byte d'un fichier disque ou périphérique ouvert en accès lent
par byte ou par ligne.

Paramètres d'entrée: A: numéro de canal
BC: nombre de bytes à lire
DE: pointeur en mémoire

Paramètre de sortie : BC: nombre de bytes lus

Liste des erreurs possibles pour cet appel

6 End of file
22 Channel error
30 Device timeout
33 Read error

8.4.11 APPEL 7 7RDLINE

Lecture d'une ligne d'un fichier disque ou
lent par byte ou par ligne.

Paramètres d'entrée: A: numéro de canal

périphérique ouvert en accès

DE: pointeur en mémoire

Paramètres de sortie: BC:longueur de la ligne en bytes

Liste des erreurs possibles pour cet appel :

5 Line too long
6 End of file

22 Channel error
30 Device timeout
33 Read error
Remarque: . La longueur des lignes est limitée a 256 caractères.

Les terminateurs reconnus pour la ligne sont: ZERO, CR, FF.

8.4.12

����������	������	���

���

8.4.12 APPEL 10 7WRBL0C

Ecriture dans un fichier disque ou périphérique ouvert en accès rapide par
bloc.

Paramètres d'entrée:

O

A: numéro de canal
BC: nombre de bytes à écrire (REMARQUE

IMPORTANTE: seule la dernière tranche
écrite dans le fichier n'est pas forcément
multiple de 400g (voir 8.4.1.5)

DE: pointeur en mémoire

Paramètres de sortie: BC: nombre de bytes écrits

Liste des erreurs possibles pour cet appel:

7 File end overflow
22 Channel error
30 Device timeout
33 'Jri te error

8,4.13 APPEL 26 7WRBYTE

Ecriture par byte dans un fichier disque ou périphérique ouvert en
accès lent par byte ou par ligne.

Paramètres d'entrée: A: numéro de canal
BC: nombre de bytes à écrire
DE: pointeur en mémoire

Paramètres de sortie: BC: nombre de bytes écrits

Liste des erreurs possibles pour cet appel :

7 File end overflow
22 Channel error
30 Device timeout
32 Write error

8.4.13

����������	������	���

���

8.4.14 APPEL 11 7WRLINE

Ecriture d'une ligne dans un fichier disque ou
accès lent par byte ou par ligne.

périphérique ouvert en

Paramètres d'entrée: A: numéro de canal
DE: pointeur en mémoire

Paramètre de sortie: BC: longueur de la ligne en bytes.

Liste des erreurs possibles pour cet appel:
5 Line too long
7 File end overflow

22 Channel error
30 Device timeout
32 Write error

Remarque: La longueur de la ligne est limitée à 256 caractères.
Les terminateurs reconnus sont: ZERO, CR, FF.

8.4.15 APPEL 16 7LIST

Produit la liste des fichiers d'un répertoire

Paramètres d'entrée: DE: pointeur au nom
BC: pointeur en mémoire

Format d'un élément de la liste

22 bytes --------------------------------------

i 1' A ' I 4-date de création 1
* । l— ----- fin du fichier 2

; i------------------- début du fichier 2
1______ 1---------- -taille dernier bloc 1

-taille du fichier 2
attributs du fichier]

----- „ .•------------------- —état du fichier]
----------------------------------- ------extension du nom 2

- nom du fichier 8

Ficnier définition

Date de création: en BCD date de création du fichier dans l'ordre
*----------- —----------- J J MM A A

Fin du fichier: en binaire, numéro du dernier bloc + 1

Début du fichier: en binaire, numéro du premier bloc

Taille dernier bloc: en binaire, nombre de bytes valides pour le dernier
--------------------------------- bloc; 0/ signifiant bloc entièrement valide, soit 4008.

8.4-14

����������	������	���

���

Taille du fichier:en binaire, taille du fichier en blocs

Attributs du fichier: 1 byte selon le

Etat du fichier: 1 caractère ASCII

format: |--------0 C P R V

A H 1 ;
Bit ouvert -en lecture------------1
Bit ouvert en création-------------- I
Bit attribute protect --------------------
Bit read protect-------------------------
Bit write protect----------------------------—!

0: fichier fermé
1 àn: nombre d'ouvertures en lecture
C: ouvert en écriture

Extension du nom:

Nom du fichier:

2 caractères ASCII

8 caractères ASCII

Format de la liste:

BC

^2 bytes

nombre de fichiers dans le répertoire x 22 bytes

-plus grand trou

- place 1ibre
"byte 0

Place libre: en binaire la somme en blocs de tous les espaces vides sur le
dans le répertoire.

Plus grand trou: taille en blocs du plus grand trou dans le
répertoire.

Liste des erreurs possibles pour cet appel:

21 Unknown device
30 Device timeout
33 Read error

Remarque: la liste la plus longue possible (32 fichiers) nécessite
707. bytes.

8.4.16 APPEL 1 7DELETE

Suppression d'un fichier dans un répertoire

Paramètre d'entré DE: pointeur au nom

Liste des erreurs possibles pour cet appel:

1 Write protect file
10 File in use for writing
12 File does not exist
13 Illégal filename
20 File in use for reading
21 Channel error
30 Device timeout
32 Write error
33 Read error

REMARQUE:
pour pouvoir être supprime, le fichier doit etre ferme
et ne doit pas être protégé à l'écriture.
La disquette ne doit pas être protégée. 8.4-15

����������	������	���

���

8-4.17 APPEL 2 7RENAME

Changement du nom d'un fichier dans un répertoire

Paramètres d'entrée: DE: pointeur à l'ancien nom
BC: pointeur au nouveau nom

Liste des erreurs possibles pour cet appel:

1 -Write protect file
10 File in use for writing
11 File already exists
12 File does not exist O
13 111 égal, filename
20 File in use for readinq
21 Unknown device
30 Device timeout
31 Write prûtect tab set
32 Write error
33 Read error

Remarque: . La chaîne ASCII, pointée par BC, qui contient le nouveau nom,
peut contenir un lien de répertoire
Celui-ci est ignorée pour autant que la syntaxe soit correcte.

REMARQUE: pour pouvoir être renoimié, le fichier doit être fermé et ne doit pas être
protégé à l'écriture.
La disquette ne doit pas être protégée.

8.4.18 APPEL 14 7C0MPRE

Réunit tous les espaces vides d'un répertoire en un seul

Paramètres d'entrée: DE: pointeur au nom

A: nombre de blocs affectés comme buffers de conversion
A=0 : compression avec les buffers internes de SAMOS.

BC: pointeur du buffer (si A^0)

Liste des erreurs possibles pour cet appel

21 Unknown device
23 File(s) in use
30 Device timeout
31 Write protect tab set
32 Write error
33 Read error

Remarques : Une erreur disque durant COMPRE est fatale

L'utilisation des buffers de SAMOS pour la compression permet
d'éviter d'affecter la mémoire utilisateur; l'opération est
cependant très lente. Si l'on spécifie un buffer, on a intérêt
à ce qu'il soit le plus grand possible.

. Tous les fichiers du répertoire doivent être fermés

8.4-16

����������	������	���

���

8.4.19 APPEL 13 ?LGO

Chargement et exécution d'un fichier sur un disque

Paramètre d'entrée: DE: pointeur au non

Paramètre de sortie: DE: pointeur du prochain caractère significatif (voir remarques)

Liste des erreurs possibles pour cet appel

2 Read protect file
10 File in use for writing
12 File does not exist
13 Illégal filename
16 Cannot load file
20 File in use for reading
21 Unknown device
30 Device timeout’
33 Read error
34 No ^Larting address

Remarques :

. Durant l'exécution de cet appel, le stack est déplacé en SPUTIL.
En cas d'erreur durant l'exécution de l'appel on distingue
deux comportements:

1. Si aucun byte n'a encore été chargé ou s'il s'agit du message
"no starting address", on revient de l'appel carry set avec
dans A le numéro de l'erreur. Dans ce cas, le stack est remis
à sa place initiale.

2. Si 1e chargement a commencé, on reçoit le message FATAL LOAD ERROR
et l'on saute en RESYS de SYSMON, le stack étant mis à MAXMEM.
Pour redémarrer dans le CLI, il suffit alors de taper BOOT ou,
à la rigueur de faire RESET.

S'il n'y a pas d'erreur, le stack est misa MAXMEM, les interruptions
de la RTC, du timer de l'utilisateur sont désactivées, et 1e
programme est exécuté.

. Cet appel permet un chargement dans n'importe quelle partie de la
mémoire. Il n'y a donc pas de protection contre une destruction
involontaire du software système.

. Prochain caractère significatif: si l'appel s'est effectué correctement,

on ne revient pas de l'appel et le programme est exécuté. DE pointe alors
le premier caractère significatif:
- si l'on a spécifié après le nom du programme une série de "slash",

DE pointera le premier "slash"
- sinon les séparateurs seront sautés et DE pointera le premier caractère

ASCII rencontré ou le terminateur de ligne.

Exempl es : SORT/N/E ADDRESS.AD

DE

SYNTAX ADDRESS.AD

DE

3.4-17

����������	������	���

���

8.4.20 APPEL 15 7F0RMAT

Mise à zéro et test d'écriture d'un répertoire

Paramétres d'entrée DE: pointeur au nom

Liste des erreurs possibles pour cet appel:

21
30
31
32

Unknown device
Device timeout
Write protect tab set
Write error

8.4.21 APPEL 5 ?RESET

Fermeture de tous les fichiers ouverts d'un répertoire

Pas de paramètres à spécifier

Remarques :

. Cet appel n'a pas de contrôle d'erreur.
Si une erreur survient durant la fermeture d'un canal, celui-ci est
purement et simplement supprimé; cet appel ne doit en principe être
utilisé que pour une fermeture d'urgence.

. Les paramètres DEBUT et START sont mis à zéro.

Les fichiers ayant l'extension .MC
et restent normalement ouverts.

sont protégés contre cet appel

8.4.22 APPEL 12 ?CLR

Suppression des flags d'ouverture de tous les fichiers ouverts dans un
répertoire

Paramètre d'entrée: DE: pointeur au nom

Liste des erreurs possibles pour cet appel :

21 Unknown device
30 Device timeout
31 Write protect tab set
32 Write error •
33 Read error

Remarques: . Cet appel permet d'éliminer les flags d'ouverture, dans le
directoire d'un répertoire lorsque l'on a perdu les FIT
(file information table)
Ceci est très utile après, par exemple, une panne de courant.

Une erreur disque à l'écriture est fatale pour cet appel,
puisqu'elle concerne l'écriture du directoire.

8.4-18

����������	������	���

���

8.4.23 APPEL 20 ?CHATR

Modification des attributs d'un fichier dans un répertoire

Paramètres d'entrée : DE:

de protection à l'écriture
de protection à la lecture

pointeur au nom
attributs W et R

état 1: actif état 0: inactif

Liste des erreurs possibles pour cet appel

4 Permanent file
10 File in use for writing
12 File does not exist
13 Illégal filename
20 File in use for reading
21 Unknown device
30 Device timeout
31 Write protect tab set
32 Write error
33 Read error

Remarques: . Une erreur disque à l'écriture est fatale pour cet appel puisqu'elle
concerne l'écriture du directoire
Le fichier doit être fermé et ne doit pas avoir les attributs protégés.
La disquette ne doit pas être protégée.

8.4.24 APPEL 21 ÎCHATPT

Modification de la protection des attributs d'un fichier dans un répertoire

Paramètres d'entrée: DE: pointeur au nom
A: attribut de protection P

A: :x x x x x x ■ P L
indifférent '-r-’

=0 attribut non protégé

/0 attribut protégé

Liste des'erreurs possibles pour cet appel

10
12
13
20
21
30
31
32
33

File in use for writing
File does not exist
Illégal filename
File in use for reading

Unknown device
DEvice timeout
Write protect tab set
Write error
Read error

Remarques: une erreur disque à l'écriture est fatale pour cet appel puisqu'elle
concerne l'écriture du directoire.

Le fichier doit être fermé.
La disquette ne doit pas être protégée. 8.4-19

����������	������	���

���

8.4.25 APPEL 22 7ARGS

Renseignements généraux sur un répertoire et éventuellement en plus sur un
fichier particulier de ce répertoire.

Paramètres d'entrée: DE: pointeur au nom
BC: pointeur en mémoire

Paramètres de sortie :
BC ->2 bytes: longueur du plus grand

1 byte: attributs du fichier
trou (en blocs)

état 1 : actif
état 0: inactif

V: validation du byte. Si V=1 , le byte est valide, donc le fichier
spécifié dans la chaîne ASCII pointée par DE existe dans ce répertoire.
Ce byte d'attribut du fichier ainsi que les suivants, qui se
référeront au fichier, sont valides.

0: bit d'ouverture à la lecture.
Bit virtuel, non inscrit effectivement dans le directoire, actif
si le compteur OPEN du directoire est différent de 0.

C: bit d'ouverture à l'écriture

P: bit de protection

R: bit de protection

W: bit de protection

2 bytes: taille du fichier en blocs
1 byte: nombre de bytes valides dans le dernier bloc
2 bytes: adresse de début
2 bytes: adresse de start
3 bytes: date de création

Liste des erreurs possibles pour cet appel

des attributs

à la lecture h
l attributs

à 1 ' écri ture I

A

»

21 Unknown device
30 Device timeout
33 Read error

Fichier définition

Remaraue: I La taille minimum du buffer, pointé par BC, où l'appel délivrera
ses i nf orma ti ons , doit être de 131n bytes.

8.4.26 APPEL 17 ?RTN

Effectue un .W ?LGO de CLI.SY en DX0.

Pas de paramètred 'entrée.

Remarque: On ne revient jamais de cet appel.
Si l'appel s'est effectué correctement, on est dans le programme CLI.SY
sinon, on est dans le SYSTEME avec un des messages d'erreur de l'appel
?LGO.

8.4-20
» 1

����������	������	���

���

8.4.27 APPEL 27 7UPDATE

Lecture ou écriture de blocs physiques d'un fichier dans un répertoire avec accès
aléatoire à l'intérieur du fichier.

Paramètres d'entrée: A: numéro de canal
DE: pointeur en mémoire
BC: nombre de bytes à lire ou écrire
HL: numéro du bloc (de 0 à n)
Carry=l: écriture
Carry=0: lecture

O

Paramètres de sortie: BC: nombre de bytes lus ou écrits

. Sans message d'erreur (retour carry clear) on rend dans BC le nombre de bytes
effectivement lus ou écrits (sauf si le nombre de bytes spécifié en entrée ne
respectait pas la règle du multiple de 4008; on rend le multiple supérieur
de 4008).

. En lecture avec le message "end of file"
(pas forcément multiple de 400g).

BC donne le nombre de bytes valides

. En écriture avec le message "file end overflow" BC donne un multiple de 400g
correspondant aux blocs effectivement écrits. ATTENTION: ne pas écrire dans
la partie non significative du dernier bloc; cette condition n'est pas détectée
par SAMOS car le message "file end overflow" est géré au niveau des blocs.

Liste des erreurs possibles pour cet appel:

6 End of file
7 File end overflow

17 Out of file
22 Channel error
30 • Device timeout
32 Write error
33 Read error

Remarques: . Pour accéder en UPDATE sur un fichier, il faut qu'il ait été ouvert
en accès par blocs en lecture (OPEBLK).

On accède aléatoirement à chaque bloc physique en spécifiant dans HL
l'offset, en nombre de blocs, par rapport à l'origine en cours et dans
BC le nombre de bytes (multiple de 400g) à lire ou à écrire depuis 1à.
Juste après l'ouverture, et tant que l'on n'a pas lu ce fichier avec
l'appel 7RDBL0C, l'origine en cours coïncide avec le début du fichier.

Après une lecture de ce fichier par l'appel 7RDBL0C l'origine
en cours est déplacée sur le bloc suivant le dernier bloc lu ~
par l'accès 7RDBL0C. On ne pourra donc, avec l'appel 7UPDATE,
plus accéder aux blocs lus à l'aide de 7RDBL0C.

. Si on utilise successivement les appels
ne pas oublier que chaque appel 7RDBL0C
bloc donné pour 7UPDATE.

7RDBL0C
change

et 7UPDATE,
1'offset d'un

Exemple:

-„1 bloc bloc donné
fi chi er

origine
en cours

01 2 3 4 5 6 7 8 9 101112 Dans ce cas: offset pour ?UPDATE=12

8.4-21

����������	������	���

���

Lecture de 6 blocs après 7RDBLOC donne:

■ ^1 bloc ibloc donné । _. . .
^- ■ ■ ■ -■—•—•—f—-—*—■—•—*—•—■—.—■. - fichier

a 'origine en cours

0 1 2 3 4 5 Maintenant l'offset pour le même b 1 oc vaut 5

plus accessible
par 7UPDATE

8.4.28 appel 30 7ERR0R

Visualisation d'un numéro d'erreur

Paramètre d'entrée: A: No de l'erreur

Fonctionnement: Cherche en DX0: s'il existe le fichier ER.SY
Si c'est le cas, cherche dans ce fichier s'il s'y trouve ce numéro
d'erreur. Si c'est encore le cas, affiche à l'écran la phrase
correspondante. Dans les cas contraires affiche à l'écran le
message ERROR suivi du numéro de l'erreur que l'on voulait
Visualiser.

REMARQUE: le fichier ER.SY • fait partie du système SAMOS.
Lors de son emploi par l'appel 7ERR0R celui-ci est
chargé dans un buffer interne. Ce fichier ne doit donc
en aucun cas être modifié (exemple ajout de messages
personnels!), en effet sa taille ne doit pas dépasser
trois blocs.

8.4.29 APPEL 31 7RDER0

Lecture de la somme des erreurs éventuelles durant un accès disque.

Paramètre de sortie: A: somme des erreurs

REMARQUE:

Exempl e:

SAMOS admet 10 tentatives avant de signaler une erreur
de lecture ou d'écriture. Cet appel comptabilise la
somme des tentatives supplémentaires.

un accès disque lit les blocs 101 à 103 compris.
S'il a fallu pour lire le bloc:

101: 3 tentatives
102: 8 tentatives
103: 4 tentatives

2 erreurs
7 erreurs
3 erreurs

Total et valeur de A:12 erreurs

8.4.30 APPEL 33 7GNBL0C

Lecture du nombre de blocs du répertoire courant.

Paramètre de sortie: BC: nombre de blocs du répertoire courant.

8.4-22

u i

����������	������	���

���

8.4.31 Appel 36 ?LOAD

Cet appel permet le chargement direct d'un fichier à un emplacement donné et
avec une longueur maximum donnée. Cet appel travaille avec le stack utilisa­
teur. La recherche aura lieu dans le répertoire courant; si la recherche échoue,
elle se poursuivra dans les répertoires DXO: et DX1:.

Lorsqu'il charge un fichier binaire (adresse de chargement donnée au CLOSE
différente de zéro)- il vérifie que l'adresse de chargement spécifiée est
bien la même que celle du fichier. Si ce n'est pas le cas, il n'y a pas de
chargement et un retour d'appel carry set avec l'erreur 16 (fichier non
exécutable). BC vaut alors 0. S'il s'agit d'un autre fichier (adresse de char­
gement égale à zéro), ce contrôle n'est pas effectué et le fichier se charge de
toutes façons. Pour la longueur du chargement, l'appel ne dépassera jamais le
multiple supérieur de 400 de la valeur spécifiée dans BC.

Exemple: BC = 1 400, BC = 400 400, BC = 401 1000.

Si le fichier est trop grand, l'appel revient carry set avec l'erreur 16 et BC donne
la longueur effectivement chargée. Si le fichier est plus petit; le retour est
carry clear et BC donne la longueur exacte du fichier chargé.

Paramètres d'entrée:

Paramètres de sortie:

Modifiés :

DE = pointeur au nom
HL = adresse de chargement
BC = longueur maximale admise (multiple de 400 ! ! !)

BC = longueur valide effective
CS en cas d'erreur avec A = No de l'erreur

AF
BC

8.4.32 Appel 34 ?DIR

Cet appel permet de se mettre de manière fixe dans un répertoire.

Paramètre d'entrée:

Paramètre de sortie:

Modifiés :

DE = pointeur au nom (lien du répertoire)

AF

8.4.33 Appel 37 ?'GDIR

Cet appel rend dans le buffer pointé par DE le nom du répertoire courant
sans extension et terminé par un zéro. Le buffer doit avoir une longueur
de 9 bytes.

Paramètres d'entrée: DE = pointeur au buffer

Paramètres de sortie: nom du répertoire courant dans le buffer

Modifiés : AF

8.4.23

����������	������	���

���

8.4.34 APPEL 42 ?SHEAD

Cet appel, uniquement valable dans la version floppy doubles têtes, permet
de sélectionner le mode de fonctionnement des drives DXO: et DX1:.

En cas d'utilisation de cet appel dans une configuration sans floppy double tête,
on a un retour carry set avec l'erreurllO (commande illégale).

Paramètres d'entrée: A = xabxxxx
a = drive DX1 b = drive DXC bit set: 2 têtes

Paramètres de sortie:

Modifiés : AF

8.4.35 Appel 43 ?GHEAD

Cet appel, uniquement valable dans la version floppy doubles têtes, donne
dans A le mode de fonctionnement courant des floppies.

En cas d'utilisation de cet appel dans une configuration sans floppy double
têtes, on a un retout carry set avec l'erreur 110 (commande illégale).

Paramètres d'entrée: —

Paramètres de sortie: A = xabxxxx
a = drive DX1 b = drive DXO bit set: 2 têtes

Modifiés : AF

8.4.36 Appel 40 7M0DAY

Cet appel permet de modifier la date de création d'un fichier.

Paramètres d'entrée: DE = pointeur au nom
ABC = nouvel 1e date

Paramètres de sortie: —

Modifiés : AF

8.4.37 Appel 41 ÎGSAMOS

Cet appel rend dans BC la révision et la version ASCII, ainsi que les
paramètres de la configuration utilisée dans A.

Paramètres d'entrée: —

Paramètres de sortie: B = révision C = version
A = xxxabcde bit set = oui
a = winchester en DX2:
b = winchester en DX1:
c = winchester en DXO:
d = floppy double têtes
e = floppy simple tête

Modifiés: AF, BC 8.4.24
5

����������	������	���

���

8.5 DESCRIPTION DES INDIRECTIONS SUR LES ROUTINES DE BASE

8.5.1 DESCRIPTION DES PARAMETRES

Les routines de base disque permettent de lire ou d'écrire n'importe où
sur le disque. Il faut cependant spécifier les adresses disque désirées.
Ces adresses disque se donnent en numéro de bloc dans un registre 16 bits.

On utilisera, pour faire fonctionner ces routines, également les paramètres
pointeur en mémoire et pointeur au nom. Ces paramètres sont identiques à ceux
utilisés pour les appels SAMOS (se référer donc à leur description).

REMARQUE IMPORTANTE: des problèmes hardware font que le bon fonctionnement
des disques n'est garanti que si l'on n'est pas en mode graphique (dans ce
mode, l'augmentation de durée de 11 interruption DMA display fait que le
processeur n'arrive plus à suivre le contrôleur de disques). Si les appels
SAMOS se préoccupent de changer le mode du çJisplay et de le restituer en
sortie, les routines de base ne le font pas. C'est donc à l'utilisateur
de ces routines de se préoccuper de ce problème.

8.5.2 RODWIB (Read On Disk Write In Buffer)

Adresse de l'indirection: 10003

Cette routine, comme son nom l'indique, permet de lire une portion du disque
et d'écrire son contenu en mémoire. Il faut donc préciser les_limites de la
portion à Tire sur le disque. Ceci est donné par un numéro de bloc de départ
et un No de bloc de fin qûi est l'adresse du 1er secteur n'“appartenant plus
à la portion à lire (en d'autres mots, l'adresse du dernier secteur + 1).

1 piste
mémoire disque

1 secteur I

l--f- i -
tt

. ' PORTION A..LIRE
’•; • * ’ • »4f.‘• f • . *

.........../•.• •» fr»

adresse de début adresse de fin

Cette information qui est lue sur le disque doit naturellement être écrite dans
une zone mémoire spécifiée. C'est le paramètre pointeur en mémoire qui fournit
cette information. Il donne l'origine du buffer gai va recevoir l'information.
Tout comme un appel SAMOS, une erreur peut intervenir. La routine se comporte
de manière similaire aux appels, on reviendra Carry set et avec le numéro d'erreur
dans le registre A.

Cette routine ne se suffit pas à elle-même. En effet, il faut pouvoir spécifier
préalablement l'adresse du répertoire sur lequel nous allons faire ce travail.
Nous pourrons le faire grâce à l'indirection sur la routine TSTDRI décrite plus
loin. D'autre part, cette routine ne désélectionne pas le drive. Il faudra le
faire avec l'indirection sur la routine STOP , également décrite ci-après.
C'est uniquement dans le cas d'un retour avec erreur que le drive est automatique-
ment désélectionné.

8.5-1

����������	������	���

���

CALL RODWIB

RODWIB = 10003

in: BC = numéro du bloc de départ
HL = numéro du bloc de fin
DE = pointeur en mémoire

out: Carry set si erreur, avec dans A le No de l'erreur

mod: A, BC, DE, HL, F

8.5.3 RIBWOD (Read In Buffer, Write On Disk)

Adresse de l'indirection: 10006

Cette routine, comme son nom l'indique, permet d'écrire sur une portion de
disque préalablement lue en mémoire. Elle fonctionne exactement à l'inverse de
RODWIB qui vient d'être décrit. Se reporter donc au paragraphe précédent pour
la compréhension du fonctionnement de RIBWOD.

CALL RIBWOD

RIBWOD = 10006

in: BC = numéro du bloc de départ
HL = numéro du bloc de fin •
DE = pointeur en mémoire

«
out: Carry set si erreur avec dans A le No de l'erreur

mod: A, BC, DE, HL, F.

8.5.4 TSTDRI (Test of drive and repertory address)_

Adresse de l'indirection: 10011

Cette routine reconnaît dans la chaîne ASCII du pointeur au nom le lien
du répertoire spécifié. Les règles de syntaxe décrites pour le pointeur
au nom des appels SAMOS sont valables. On utilise cette routine pour spé
cifier le répertoire que l'on désire accéder. 11 n'est pas nécessaire
d'appeler cette routine avant chaque accès, mais avant le premier et par
la suite à chaque fois que l'on change de répertoire.

CALL TSTDRI

TSTDRI = 10011

in: DE = pointeur au nom

mod: A, HL, DE, F

8.5.5 SiOP(disable drive selectio_n)

Adresse de 1'indirection: 10000
__ _ _ __ _ ___________ ________________—e w

Cette routine permet de désélectionner un drive qui l'a été par une des routines
RODWIB ou RIBWOD. Elle n'est nécessaire qu'en fin de travail. En effet un certain
travail peut être composé d'une succession d'accès disque. Il est alors agréable
de ne pas désélectionner le drive entre chaque accès. La routine STOP n'est
même pas nécessaire si l'on change de répertoire. En effet c'est la routine
TSTDRI qui assurera la transition d'un répertoire à l'autre. Il faut ranarquer que dès
que l'on a exécuté un accès disque (RODWIB ou RIBWOD) 1'interruption 50 Hz est
inhibée, le clavier n'est donc plus accessible.

8.5-2

����������	������	���

���

On peut naturellement réactiver l'interruption 50 Hz entre deux accès disque à
l'aide de l'appel SYSTEME 7ENI50 . Il n'est pas nécessaire de le désactiver à
nouveau avant le prochain accès disque.

CALL STOP

STOP = 10000

aucun paramètre, n'affecte rien.

8.5.6 INIFLO (Init SMAKY6 in Floppy mode)

Adresse de l'indirection: 10017

Cette routine effectue les" travaux suivants:

- Affiche sur l'écran SAMOS rév./ version
- Initialise les restarts floppy (restart 10 et 20)
- Initialisation des FIT (file information table)
- Tracking des disques (initialisation en piste 0) avec reconnaissance des

drives où le tracking s'est correctement effectué
- Affichage des adresses de drive non reconnues.

Attention: cette routine ne modifie pas MAXMEM, et, évidemment, n'initialise
pas le stack.

CALL INIFLO

INIFLO = 10017

pas de paramètre

mod: A, HL, BC, F

8.5-3

H k

����������	������	���

���

8.5.7 INDIRECTION SUR RTN

Adresse de l'indirection : 10025

Effectue un ?LGO de CLI.SY en DX0: (même effet que l'appel ?RTN)

8.5.8 INDIRECTION SUR BOOT

Adresse de la routine: 10022

Exécution du programme de bootstrap

8.5.9 NMIRTN

Adresse: 10030

Cette adresse est prévue pour l'initialisation de la touche NMI.
Un retour par cette adresse ferme tout d'abord le fichier MACRO, s'il en
existe un d'ouvert, puis effectue un RTN.

8.5..10 ROUTINE ADBLK

Adresse de la routine: 10014

Cette routine effectue une addition de blocs entre HL et DE. le résultat •w
étant dans HL. Si le résultat de l'addition dépasse la capacité maximum du
répertoire, le retour se fait carry set avec A=erreur 26 (disk full)
et HL= le numéro du dernier bloc admissible (soit l'adresse du premier
secteur hors capacité).

cette adresse est relative, le premier bloc d'un répertoire a toujours le
numéro zéro. Pour connaître l'adresse absolue, il faut additionner l'adresse
absolue du premier bloc du répertoire.

CALL ADBLK

ADBLK = 10014

in:
out:

mod:

HL et DE: éléments de l'addition
A = erreur 26 et carry set si dépassement
HL = résultat addition ou valeur maximum admissible si dépassement
A, DE, HL, F

8.5-4

����������	������	���

���

8.6. EXEMPLES D'UTILISATION DES APPELS SAMOS

R-6-1 INTRODUCTION

Nous venons de passer en revue tous les appels floppy SAMOS. Vous connaissez
donc les définitions de ces outils, mais cela ne veut pas dire que vous sachiez
vous en servir. Voici quelques exemples fondamentaux qui devraient vous
faciliter la tache dans vos programmes utilisant des fichiers disque ou
périphérique.

8-6-2 UN PREMIER EXEMPLE SIMPLE ET COMMENTE
«

Dans cet exemple nous allons tout simplement lire un fichier source sur disque
et le transférer sur l’écran grâce au fichier périphérique écran SDIS. Nous
ferons ceci 10 bytes a 10 bytes.

Supposons que notre fichier disque s’appelle TOTO.SR, et qu'il se trouve sur la
disquette inseree dans le drive DX1:.

Pour pouvoir lire ce fichier il faut tout d’abord l'ouvir. Nous avons besoin
pour ce faire des informations suivantes: le nom du fichier et l’adresse du
drive où se trouve la disquette contenant notre fichier. Il faut donc définir
une chaîne ascii contenant ces deux informations.

INFILE: .ASCIZ /DX1:TOTO.SR/

L’étiquette INFILE est l’adresse du premier caractère de cette chaîne ASCII.

Nous oouvons maintenant ouvir notre fichier. Comme nous voulons lire notre
fichier par 10 bytes, nous utilisons l’accès par bytes et nous écrivons:

LO AD
.W

DE^INFILE
?0PEN

;DE pointeur au nom
/ouverture en accès par bytes

Nous avons a ce stade un problème. Nous savons que nous pouvons revenir d’un
aooel SAMOS avec une erreur, il est donc necessaire de prévoir cette
éventualité. Comme en cas d’erreur nous avons CARRY SET en sortie d'appel nous
écrivons :

JuMP,CS ERROR

ERROR étant une portion de notre programme où nous traiterons les erreurs
d*entée-sortre disque.

Si notre appel d'ouverture de fichier s'est effectué correctement, nous
savons eue SA.M0S nous rend un numéro de CANAL qui sera utilise pour la suite des
transactions. Nous allons donc sauver ce numéro de canal par exemple dans une
position mémoire. Nous écrivons donc:

LOAD INCH,A

A ce stade, nous sommes capables de commencer a LIRE notre fichier TOTO.SR.
Cependant n'oublions pas que nous voulons ECRIRE les bytes lus sur l’écran. Il
faut donc également ouvrir EN ECRITURE le fichier périphérique SDIS.

����������	������	���

���

Pour ouvrir un fichier périphérique en écriture nous n’avons besoin que du nom.
Nous définissons donc une autre chaîne ascii et nous écrivons:

OUTFIL: .ASCIZ /SDIS/

Nous pouvons maintenant ouvir notre fichier et nous écrivons:

LOAD
.W

DE,#OUTFIL

Comme pour TOTO.SR nous prévoyons une éventuelle erreur:

JUMP, CS ERROR

Et nous sauvons egalement le numéro de canal:

LOAD OUTCH,A

Cette fois, nous somme prêt a effectuer nos transferts de bytes du fichier
disque sur le périphérique SDIS.

Nous lisons tout d'aLbord
d’un BUFFER de 10 bytes

10 bytes de TOTO.SR. Pour ce faire, nous avons besoin
où l’appel de lecture délivrera son information.

Définissons-le:

LONGDATA=10.
BUFFER: .BLKB LONGDATA

Lisons maintenant 10 bytes de notre fichier TOTO.SR. Pour ce faire nous
initialisons le POINTEUR EN MEMOIRE DE au début de notre buffer. Dans A nous
mettons le numéro de CANAL et dans BC le NOMBRE DE BYTES a lire. Ceci donne:

LOAD
load”

DIFI1:

DE,2BUFFER
BC,#LONGDATA

A,INCH
?RDBYTE

La, un nouveau problème ce pose en cas d’erreur. Nous ne pouvons pas simplement
sauter a ERROR, car nous devons FILTRER l'ERREUR END OF FILE qui nous apprend que
nous avons lu tous les bytes de TOTO.SR. EREOF étant le numéro de cette erreur,
nou$ pouvons par exemple traiter le problème ainsi:

JUMP,CC DIFI2
COMP A,#EREOF
JUMP,NE ERROR

;pas d'erreur = pas de problème
•test Si END OF FIUE
; si non, va a ERROR

Comme nous lisons par tranche de 10 bytes, il est fort possible que nous ayons
tout de meme lu quelqués bytes. Nous ne pouvons donc pas simplement terminer ici
le programme. Il faut VERIFIER QUE LE NOMBRE DE BYTES LUS RENDU DANS BC SOIT NUL.
Nous écrivons alors:

LO AD A, B
OR A,C
JUMP,EQ FIN

/teste si le registre
;BC est nul
;si c'est le cas, c'est fini

Dans le cas contraire, ou si nous n'avons pas eu d'erreur, il faut maintenant
transférer les 10 bytes lus sur l’écran. Comme LE POINTEUR EN MEMOIRE DE N'EST
PAS MODIFIE nous pointons le début de notre information lue. Comme d'autre part
BC = NOMBRE DE BYTES EFFECTIVEMENT LUS, il suffit d’écrire:

5

DIFI2:
LOAD A,OUTCH
.W ?WRBYXE
JUMP,CS ERROR

;A = numéro de canal de SDIS

8.6-2

����������	������	���

���

Il suffit maintenant de fermer notre boucle de tranfert, pour exécuter le
programme jusqu’au transfert intégral de TOTO.SR.

JUMP DIFI1

Pour que notre programme soit complet nous devons encore voir ce que nous devons
faire une fois le transfert terminé. Il faut tout naturellement FERMER LES
FICHIERS UTILISES. Pour cela nous pouvons utiliser soit deux fois l’appel CLOSE
pour chaque canal ou alors l'appel RESET qui ferme tous les fichiers ouvert.
Utilisons donc simplement RESET:

FIN:
’ .W

.W
?RESET
7RTN

Nous avons finalement utilisé l’appel RTN qui termine le programme et revient au
CLI.

Il ne reste plus qu'a traiter les cas des erreurs. On utilise généralement
l’appel ERROR qui permet la visualisation de l’erreur. On peut par exemple
traiter le cas de la manière suivante:

’ ERROR:
.W
.W
.W
.W

7RETURN
?ERROR
? RESET
7RTN

; va a la ligne
/visualise l'erreur
; ferme tous les fichiers
;et retourne au CLI

Si l’on ajoute au début une initialisation de l’écran voici finalement notre
petit programme DISFILE (display file).

PROC
DISFILE PROGRAM
Z80
F LO

LONGDATA=10.

.LOC 53000

; initialisation du programme

DISFIL:
LO AD
.W
LO AD
.W
JUMP,CS
LO AD
LO AD
.W
JUMP, CS
LO AD
LO AD

C,#LINES
7IDIS
DE,SINFILE
70PEN
ERROR
INCH,A
DE,#0UTFIL
7CREATE
ERROR
OUTCH,A
DE,^BUFFER

; initialise une fenêtre
; sur tout l’écran
; DE = pt au nom fichier entrée
; ouverture en accès par bytes
; avorte en cas d’erreur
; sauve le canal d’entrée
; DE = pt au nom fichier sortie
; création en accès par bytes
; avorte en cas d’erreur
; sauve le canal de sortie
; DE = pointer le buffer

; Boucle du transfert

DIFI1: LOAD
LOAD
.W
JUMP,CC
COMP
JUMP, NE
LO?JD
OR
JUMP, EQ

BC,#LONGDATA
A,INCH
7RDBYTE
DIFI2
A,#ERE0F
E RRO R
A, B
A,C
FIN

; BC = nombre de bytes a opérer
; A = canal d’entrée
; lecture des bytes
; saute si pas d’erreur
; test Si END OF FILE
; Si non, va a ERROR
; teste si le registre
; BC est nul
; si c’est le cas, c’est fini

R.

����������	������	���

���

DIFI2:

LOAD A,OUTCH
.W 7WRBYTE
JUMP, CS ERROR
JUMP DIFI1

; A « canal de sortie
; écriture des bytes
; avorte en cas d’erreur
; continue le transfert

; Fin du programme

FIN:
.W

O

.W
?RESET
7RTN

; ferme tous les fichiers
; retourne au CLI

; Fin du programme en cas d'erreur

ERROR;
.W
.W
.w
.w

7RETURN
7ERR0R
7RESET
7RTN

; va a la ligne
; visualise l’erreur
; ferme tous les fichiers
; et retourne au CLI

; Nom des fichiers, paramètres en RAM et buffer.

INFILE:
OUTFIL :
INCH:
OUTCH:
BUFFER:

.ASCIZ /DX1:TOTO.SR/

.ASCIZ /SDIS/

.BLKB 1

.BLKB 1

.BLKB LONGDATA

; nom fichier d'entrée
; nom fichier sortie
; mémoire canal d'entrée
; mémoire canal de sortie

; buffer de transfert

.END DISFIL

8-6-3 APPRENONS PLUS EN AMELIORANT CE PROGRAMME

Le petit programme que nous venons de décrire a l'avantage d'étre très simple
pour bien faire comprendre le fonctionnement fondamental des principaux appels
SAMOS mais n'est évidemment pas très évolué. Voici ce que nous allons améliorer:

Spécification dans la ligne de commande d'appel du programme des noms du fichier
en entrée et du fichier en sortie.

Comme nous allons pouvoir spécifier le fichier en sortie, nous transférerons
également les paramètres du fichier: ADRESSE DE DEBUT, ADRESSE DE START pour le
cas d'un transfert sur un NOUVEAU FICHIER DISQUE. Nous utiliserons 1'ACCES PAR
BLOCS et un grand buffer pour être plus rapide.

On voit que ces modifications vont faire de notre programme un PROGRAMME DE
TRANFERT DE FICHIER GENERAL, qui peut notemment faire exactement ce que faisait
DISFILE mais aussi tous autres types de transferts. Nous l’appellerons donc XFER
et pour transférer par exemple le fichier TOTO.TX dans le fichier TITI.SR, il
faudra taper XFER TOTO.TX TITI.SR.

Z80
XFER PROGRAM

. LOC 53000

ERILC 110 ; No message d'erreur
; commande illégale

����������	������	���

���

; initialisation du programme :

; ouverture du fichier en entree
; après le LGO de notre programme XFER
; DE pointe l'argument suivant de la ligne de commande

XFER:
LO AD
OR
JUMP,EQ
.w'
JUMP, CS
LO AD

A,(DE)
A, A
ILLCOM
7OPEBLK
ERROR
INCH,A

; lit un car de la ligne de commande
; test si fin de la ligne
; saute a commande illégale si oui
; ouverture en accès par blocs
; avorte en cas d’erreur
; sauve le canal d’entrée

; lecture des paramètres du fichier d’entrée

LO AD BCZ#ARGBUF
?ARGS

; pointe buffer des paramètres
; lit les paramètres

; pointeur de la ligne de commande
; sur l’argument suivant

XFERO:
LO AD
INC
OR
JUMPZEQ
COMP
JUMPZEQ
COMP
JUMP, NE

A,(DE)
DE
AZA
ILLCOM
A,ESPACE
XFER1
A,^TAB
XFERO

; lit un car de la ligne de commande
; incrémente le pt de la ligne
; test si fin ligne de commande
; saute a commande illégale si oui
; test si séparateur
; saute si oui
; test si séparateur
; si non = > caract. suivant

XFER1 :
; ouverture du fichier en sortie

BCZ#O
7CREBLK
ERROR
OUTCH,A
S VOUT,DE

; réservation place par défaut
; création en accès par blocs
; avorte en cas d’erreur
; sauve le canal de sortie
; sauve pt nom fichier sortie

; calcul de la taille du buffer
; soit le nombre de bytes maximum que
; l’on pourra traiter par tranche du transfert

.W
LO AD
DEC
LO AD
OR
SUBC
LO AD
LO AD

7MEM
SP, HL
H
DE,#BUFFER
A, A
HL, DE
B,H
C, #0

; lit la fin de mémoire
; met le stack a cet endroit
; de la place pour le stack
; DE = début du buffer
; clear le carry
; calcul la taille
; BC = nombre maximum de
; bytes MULTIPLE DE 400

; Boucle du transfert

XFER2:
LO AD
,W
JUMP,CC
COMP
JUMP, NE
LO AD
OR
JUMP,EQ

A,INCH
?RDBLK
XFER 3
A,SEREOF
ERROR
A, B
A,C
FIN

; a = canal d'entrée
; lecture des blocs
; saute si pas d'erreur
; test si END OF FILE
; si non, va a ERROR
; teste si le registre
; BC est nul
; si c'est le cas, c'est fini

����������	������	���

���

XFER3*
A,OUTCH
7WRBLK

JUMP,CS ERROR
JUMP XFER2

; A = canal de sortie
; écriture des blocs
; avorte en cas d’erreur
; continue le transfert

; Fin du programme

; fermeture du fichier de sortie avec
; » les paramètres préalablement lus et sauvés
; du fichier en entrée a

FIN:
A,OUTCH
BC,DEBUT
DE ,START
7CLOSE
A,INCH
?CLOSE
7RTN

; A = canal de sortie
; BC = adr de début
; DE = adr de start
; fermeture fichier sortie

; fermeture fichier entrée
; retourne au CLI

; Fin du programme en cas d'erreur

ILLCOM:
A,#ERILC ; no erreur commande illégale

7ERR0R
? RESET
DE, SVOW
?DELETE
7RTN

; visualise l’erreur
; ferme tous les fichiers
; pointeur nom fichier sortie
; supprime si déjà crée
; et retourne au CLI

; paramètres en RAM et buffers.

OUTCH:
INCH:

START:
BUFFER:

6

1

; mémoire canal d’entrée
; mémoire canal de sortie
; mémoire pt nom fichier sortie
; buffer pour appel ARGS
; paramètre adr début
; paramètre adr de start
; début du buffer de transfert

.END

Avec ce nouveau programme nous voyons tout d ' abord que le passage des arguments
de l’ordre par la ligne de commande est relativement facile. Nous voyons
également une utilisation de l'appel ARGS qui rend possible le transfert des
paramètres du fichier d'entrée. On voit que dans ce cas, on ne peut pas utiliser
l'appel RESET pour fermer le fichier de sortie puisqu'il faut spécifier les
paramètres de début et de' start. Il faut remarquer que pour la création du
fichier de sortie, nous avons pris soin de spécifier le paramètre de réservation
de la place dans le registre BC, qui pouvait être omis dans DISFILE puisque le
fichier de sortie était un périphérique. Finalement on voit une utilisation de
l'appel DELETE, qui nous permet de supprimer le fichier de sortie en cas
d'erreur et s'il a déjà ôté créé. Remarquons que pour faire ceci, il a fallu
sauver le pointeur au nom du fichier et prendre garde d’exécuter l'appel DELETE
apres la fermeture du fichier.

����������	������	���

���

9-6-4 QUELQUES ROUTINES EXTRAITES DE PROGRAMMES

Vous trouverez ci—après des routines d’entrée—sortie disque extraite de
programmes qui montrent comment on peut utiliser avantageusement l’accès par
bloc tout en s’affranchissant des contraintes dues a ce type d’accès.

8-6-4-1 ROUTINES DE LECTURE ET D’ECRITURE BYTE A BYTE

Voici tout d'abord les paramètres utilisés par ces routines:

INCH :
OUTCH:
CNTIN:
CNTOUT;
PTIN:

BUFIN:
BUFOUT:
LGHBUF:

1

1
1
1

1

; input channel
; output channel
; input bytes counter
; output bytes counter
; input buffer current pointer
; output buffer current pointer
; begin adress of input buffer
; begin adress of output buffer
; lengh of one I/O buffer

Au départ il faut que les buffers
paramètres BUFIN, BUFOUT, LGHBUF.

soient définis, il faut donc initialiser les
Ces paramètres peuvent évidemment être donnés

comme valeurs immédiates dans les rbutines, si la taille et la position des
buffers sont invariables. Il faut egalement mettre les compteurs CNTIN et CNTOUT
a zéro, et initialiser le pointeur courant du buffer âe sortie PTOUT au début du
buffer. Les fichiers sont également ouverts avec les numéros de canal dans INCH
et OUTCH.

ROUTINE DE LECTURE

;This routine reads a character from the input buffer.
;Wnen the buffer is empty, it fills itself with blocs from
jinout file. When the file is empty, there is no return
;from the routine but a short-cicuit branch to ENDJOB.
;When a I/O disk error occurs we hâve a short-circuit
;branch onto ERROR.

;out: A = next character from input file
;mod: A,F

PUSH DE
PUSH BC
LOAD DE,PTIN
LOAD BC,CNTIN
LOAD A,B
OR A,C
JUMP.,EQ RDCAR1

; save on stack

; init DE with buffer pointer
; init BC with char counter
; test if buffer
; is empty
; if yes read next file blocs

RDCARO:
DEC
LOAD
LOAD
INC
LOAD
POP
POP
RE T

BC
CNTIN,BC
A, (DE)
DE
PTIN,DE
BC
DE

else décrément char counter
save this new value
read the char from buffer
incrément pointer
save this new pointer
restore from stack

; and return

8.6-7

����������	������	���

���

RDCAR1:
LOAD DE,BUTIN
LOAD BC,LGHBUF
LOAD A,INCH
.W 7RDBLK
JUMP.,CC RDCARO
COMP A,#EREOF
JUMP,NE ERROR
LOAD A, B
OR A,C
JUMP, EQ ENDJOB
JUMP RDCARO

; init DE with buffer begin
; init BC with buffer length
; init A with input channel
; read blocs from file
; test if I/O error occurs
; if yes, test if end of file
; if not, branch to ERROR
; else test if o char

; if yes, branch to ENDJOB
else read in buffer

ROUTINE D’ECRITURE

;This routine writes a character into the output buffer.
;When the buffer is full, it writes the buffer into output
; file.
;When a I/O disk error occurs we hâve a short-circuit
;branch onto ERROR.

;in: A = character
;out: -
;mod: F

WRCAR:
PUSH
PUSH
LOAD
LOAD
.W
JUMP.

DE

DE,LGHBUF
HL,CNTOUT
7COMPHLDE

EQ WRCAR1

; save on stack

; init DE with buffer length
; init HL with char counter
; test if buffer is full
; if yes, write buffer to file

WRCARO :
INC
LOAD
LOAD
LOAD
INC
LOAD
POP
POP
RET

CNTOUT,HL
HL,PTOUT
(HL),A

PTOUT,HL

DE

; else incrément char counter
; save new counter value
; init HL with buffer pointer
; write char into the buffer
; incrément pointer
; save new pointer value

; restore from stack
; and return

WRCAR1 :
PUSH
LOAD •
LOAD
LOAD
LOAD
LOAD
.W
JUMP, CS
LOAD
LOAD

POP
JUMP

BC
B,D
C,E
DE,BUFOUT
H,A
A,OUTCH
7WRBLK
ERROR
A,H
PTOUT,DE
HL, #0
BC
WRCARO

; save on stack
; init BC with buffer length

init DE with buffer begin
save char in H
init A with output channel
write buffer into file
branch to ERROR if I/O error
else restore char in A
save new buffer pointer
clear char counter
restore from stack
write char into buffer

8.6-8

����������	������	���

���

REMARQUE IMPORTANTE:
Il ne faut pas oublier en fin de programme que le buffer de sortie contient
certainement des informations non encore transférées dans le fichier de sortie.
Il y a donc lieu de vider ce buffer de la manière suivante:

LO AD
LO AD
LO AD
.W
JUMP,CS

DE,BUFOUT
BC,CNTOUT
A,OUTCH
?WRBLK
ERROR

; write to output file
; the contains of output
; buffer

8—6—4—2 BUFFER DE LECTURE POUR LA GESTION D’ENREGISTREMENT

Il est parfois nécessaire de pouvoir traiter une succession d’informations de
longueurs égales ou différentes entre elles, mais certainement presque jamais
égales a la longueur d’un bloc ou a un multiple supérieur (par ex: une ligne, un
enregistrement). Ainsi, avec l’accès par bloc il est pratiquement certain que le
buffer contiendra a la fin UNE INFORMATION TRONQUEE.
Il sera donc nécessaire de ne pas considérer cette partie du buffer durant le
traitement de l’information et de la reporter au début du buffer avant de lire
la suite du fichier.
La routine ci-après réalise ce travail.

Voici tout d’abord les paramètres utilisés par la routine: •

SIZE: . BLKW 1
SAVCHA : . BLKB 1
FLGEOF: .BLKB 1

; size of input buffer
; temporary channel save
; file EOF status

Seul le paramètre SIZE doit être préalablement initialisé. Au début la longueur
utile DE est évidemment égale a SIZE. Par la suite c’est la valeur rendue par la
routine elle même. Le paramètre soft end BC, est généralement déterminé par le
traitement de l’information. Il pointe la première position non significative.

; This routine fills the buffer pointed by HL of usefull length
; DE with software end. That means shift unused part at beginning
; and complété with maximum possible number of blocs ; from channel A file.
; Return new usefull length. If end of file occurs A = zéro.
; If end of file and buffer empty occur return CS and file is closed.

; BUFFER DEFINITION

|—used-part-of-buffer—j—unused-part—

HL = begin BC « soft end
<—------------ DE = usefull length-------------------■

empty part I

physical end
of buffer

out :

HL
DE
BC
A
DE
CS
A

begin of buffer pointer
= usefull length of buffer
= software buffer end pointer
= channel
= new usefull length of buffer
et DE = 0 if end of file (mean buffer empty)
= disk end of file status (null if EOF occur)

mod : AF, BC,DE

8.6-9

����������	������	���

���

FILBUF:
LO AD
LOAD
PUSH
PUSH
ADD
EX

JUMP, HS
PUSH e
EX
OR
SUBC
LOAD
LOAD
POP
POP
PUSH
LDIR

SAVCHA ,A
FLGEOF,A
HL
HL
HL, DE
HL, DE
H,B
L,C
7COMPHLDE
FILBU4

HL, DE
A,A
HL,DE
B,H
C,L
HL
DE
BC

; save channel
; set no EOF flag
; save twice
; begin of buffer
; compute buffer end
; DE = buffer end
; HL = software buffer end

; test if still valid bytes
; if not, jump
; else save soft buffer end
; HL = end DE = soft end
; clear carry
; compute offset
; BC = offset

FILBUO:
LOAD HL,SIZE
POP BCt
OR A, A
SUBC HL,BC
LOAD L,#0
PUSH BC
LOAD B,H
LOAD C,L
LOAD A,SAVCHA
.W 7RDBLK
JUMP.,CC FILBU1
COMP A,#EREOF
JUMP, NE ERROR
XOR A,A
LOAD FLGEOF,A

; restore soft end as trom
; restore beg of buffer as to
y save offset
; move offset to beg of buffer

; HL = full size of the buffer
; restore offset
; clear carry
; compute free space in buffer
; in bloc multiple
; save offset
; BC = free space in bloc

FILBU1:
POP HL
ADD HL,BC
LOAD A, H
OR A,L
JUMP.,EQ FILBU3

FILBU2:

POP
LOAD

FILBU3:
LOAD A,SAVCHA
.W 7CLOSE
JUMP,CS ERROR
SETC
JUMP FILBU2

; restore channel
; read blocs
; if no error skeep
; else test if end of file
; if not, abort

; clear no EOF flag

; restore offset
; compute new buffer length
; test if buffer
; buffer empty
; if yes, jump

; else DE = new length
; restore begin of buffer
; A = EOF status
; and return

; restore channel
; close the file
; abort if error
; set carry

FILBU4:
POP
LOAD
PUSH
JUMP

DE
HL, #0
HL
FILBUO

; restore begin of buffer
; set 0 on stack
; as null offset

����������	������	���

���

