Mis a disposition par Jean-Daniel Nicoud Numerisé par micromusee.ch
Mars 2024 |

PPY

SMAKY AND MICRO-FLO

OPERATING SYSTEM

Novembre 1982

EPSITEC-system sa

Numeérisé par micromusee.ch

SAMOS: SMAKY AND MICROFLOPPY OPERATING SYSTEM

_ Révision 1-G et T-H

A. Capt

.14 Appel 11 '?WRLINE
.158ppel 16 ?LIST

.16 Appel 1 ?DELETE

Numeérisé par micromusee.ch

TABLE DES MATIERES

8.1 Disque souple
Configuration hardware

8.2 Configuration software

SAMOS: description générale

L'autoparamétrisation

L'ordre BOOT

Organisation contigqué

Accés ,
Indirections sur les routines de base
Les 1imites de SAMOS

Les fichiers périphériques

Principes généraux des appels SAMOS
Organisation des disaguettes

O 000D o
W WWwWWwWwwWwwww w
O ONOYOIL D WA —

Les appels SAMOS

I Description générale des paramétres
.2 Description des messages d'erreur

QO oo o0
el = T

Appel @ ?CREBLK 8.4.17 Appel 2 ?RENAME "
Appel 23 7?CREATE 8.4.18 Appel 14 ?COMPRE g 2 g; ﬁggg gg 7!{.)(1320
Appel 35 ?CDIR 6.4.19 Appel 13 ?LGO 8.4.37 Appel 37 ?GDIR
Appel 3 ?0PEBLK °-4.20 Appel 15 2FORMAT g 4 34 Appel 42 ?SHEAD
Appel 24 ?0PEN e.4.2] Appel 5 = RESET g 4,35 Appel 43 ?GHEAD
4 2CLOSE S.4:22 Appel 12 1CLR 8.4.36 Appel 40 ?MODAY
6 ?RDBLOC S.4.23 Appel 20 2CHATR 8.4.37 Appel 41 ?GSAMOS
25 ?RDBYTE 8.4.24 Appe] 21 ?CHATPT
7 2RDLINE 8.4.25 Appel 22 ?ARGS
8.4.28 Appel 20 ?ERROR
8.4.29 Appel 31 ?RDERO
8.4.30 Appel 33 ?GNBLOC

Description des indirections sur les routines de base

.1 Description générale des paramétres
.2 RODWIB

.3 RIBWOD

.4 TSTDRI

.5 STOPFLO

.5.6 INIFLO
.7 Indirection sur RTN

.8 Indirection sur BOOT

.5.9 Adresse NMIRTN
.10 Routine ADBLK

OO OO0 o0
OO OhrOTOTOYOhOrT OO O

Exemples d'utilisation des appels SAMOS

Introduction
Un premier exemple simple et commente

]

.2

.3 Apprenons plus en améliorant ce programne
4 Quelques routines extraites de programmes

Numeérisé par micromusee.ch

8.1 CONFIGURATION HARDWARE FLOPPY DISQUE

w.

l."installation du disque souple sur le SMAKY6 se compose de plusieurs
élements hardware:

. le controleur de drive
. de 1 jusqu'a trois drives
. 1'alimentation des drives

LE CONTROLEUR

I1 est connecté au SMAKY sur la prise périphérique 26 podles latérale.
I1 est alimenté en +5V par cette méme prise.

C'est en fait 1'interface de commande du ou des drives qui est connecté

a ce contrdleur par un cable & prises multiples (Daisy Chain)

Le contrdleur réalise les travaux suivants:
. codage et décodage des signaux disque
. data input/output
. commande fonctionnelle du drive.

CODAGE ET DECODAGE DES SIGNAUX DISQUE

Le systéme de codage utilisé est le MFM qui permet la double densité sur
le disque. Le principe de ce codage est illustré par le dessin qui suit
suit et qui montre le diagramme de temps du codage MFM d'un byte 14Zg.

0 |] 0 0 0 1 0

bit & us | le 1 S

cellule

Chacune de ces 1impulsions est enregistrée sur le disque sous forme d'une
transition de flux magnétique. On peut s'imaginer que chacune de ces
transitions représente un petit aimant enregistré sur le media. Chacun sait
que deux aimants mis en voisinage se contrarient mutuellement. C'est aussi

ce qui se passe sur le disque, d'autant plus que les distances entre ces
"petits aimants" ne sont pas égales.

| ' =

Le petit dessin ci-dessus nous montre que, pour cette configuration de bits,
Tes impulsions A et B ont tendance a se déplacer dans le sens des fléches
étant donné Teurs positions asymétriques par rapport aux impulsions qui les
entourent. Ce phénoméne est d'autant plus fort que 1'on se rapproche de
]1"intérieur du disque. En effet la densité est plus grande sur les pistes
intérieures.

piste extérieure,
pulsions plus espacées
(256 bytes)
piste intérieure

pulsions serrees 8.1-]

Numeérisé par micromusee.ch

Ce phénoméne nécessite la pré-compensation pour garantir une lecture correcte
des informations. Ceci consiste & enregistrer les impulsions de type A et B
avec un offset avant ou arriére de maniére a ce que, une fois repoussées, les
impulsions occupent la place correcte.

Enregistrement
retardé
<G

Repoussement
Enregistrement
avance

l l -—94 Repoussement
D1t
cellule

Le codage avec.la pré-compensation décrite ici, ainsi que le décodage de
ces signaux lors d'une lecture, sont réalisés entiérement par une unité
miCro-programmée.

DATA INPUT OUTPUT

Le codage MFM est du type sériel, il nécessite donc une sérialisation de
1"information @ 1'enregistrement et une désérialisation @ Ta lecture.

Le contrb6leur effectue ces taches par des registres d& décalage. La
communication avec le SMAKY se fait donc en mode paralléle par 1'intermédiaire
de deux périphériques pour les data (éc¢riture ou lecture) et de deux péri-
phériques de contrdle de liaison (handshake).

(voir aussi plus 1oin la description des périphériques).

COMMANDE FONCTIONNELLE DU DRIVE

En plus du codage et décodage de 1'information, i1 faut naturellement

pouvoir commander toutes les fonctions du drive, telles que déplacement de la
téte, marche-arrét du moteur, sélection des modes, etc.

Ces fonctions sont réalisées par le processeur du SMAKY et le software "bas
niveau" des appels SAMOS, utilisant le périphérique S$SCONT du

controleur. Celui-ci se charge de transméttre les ordres aux différents

organes concernés, soit au niveau du contrdleur directement (exemple:
activation de 1'interruption, sélection du mode écriture), soit au niveau du
drive (exemple: mise en marche du moteur). Le sychronisme est obtenu par une
interruption, générée par le controleur, a chaque début de secteur. Ainsi donc,

les routines de plus bas. niveau telles que RBBLK (read block), WRBLK (write block)
sont des routines d'interruption.

8.1-

ro

)

Numeérisé par micromusee.ch

A toutes fins utiles, voici le tableau de définition des périphériques
du controleur:

; LECTURE 0 7 ECRITURE 0
2 Vi

Cr

-

il

!
M
f

S31

ADRSECTOR
ADRSECTOR
ADRSECTOR
WRITEGATE

=
=
.
Lo
b—
bt
o
- -

“-'-.- o e——
———— ¢

RDCONT LDCONT

w»

o

O
RDREQ

STPCMD
$33
RDBYTE
LEXTIQUE DU TABLEAU:
$30 LDINQ = load inquiry, low $32 RDINQ = read inquiry, low
_____ LDREQ = load request RDREQ = read request
$30 LDBYTE = load byte, Tow —
N $32 STPCMD = step command, 1ow
$31 RDCONT = read control, Tow —
WRPRCT = write protect flag, low $33 RDBYTE = read byte, low
TRACK® = track zero flag, Tow
READY = ready flag, low
SYNFLG = synchro flag, low
ADRSECTOR = 4 bit sector address

$31 LDCONT vrite control, low

DRISEL 1 to 3 = drive selection, Tow
STPDIRIN = step direction, Tow
MOTORON = motor on, Tow

INTON = sector interrupt on, low
WRITEMOD= controller in write mode, low

WRITEGATE= drive in write mode, Tow 8 1-3

Numeérisé par micromusee.ch

LE DISQUE SOUPLE

trou de
| secteur
e ————————, Jrr—— |
Dégagement N trou
d'accés de . d'index
la tete ‘
disque
Pochette ,/”//’"‘*\\
en carto [/ |
plastifié []
trou de \ \\] v
lecture des\\ w——
secteurs et -~
de 1'index
ot })‘/// couche de
_— y, tissu a base
Fente du ' de téflon
Write .
Protect Etiquette

Sens d'introduction
dans le drive

Comme vous pouvez le voir sur ce dessin, le disque souple est enfermé dans une
nochette dont la surface intérieure est recouverte d'un tissu @ base de téflon
qui donne un frottement minimum, tout en nettoyant le disque.

Le disque est divisé en 16 secteurs égaux, repérés chacun par un trou percé dans
le disque souple. Un trou supplémentaire percé entre deux trous de secteur indique
l1'origine. C'est le trou d'index. La pochette a également un trou qui permet a

un sysitéme opto-électronique de lire les secteurs et 1'index. Une autre ouverture
de l1a disquette permet @ la téte de lecture/écriture d'étre en contact avec le
¢isque et de se déplacer radialement sur ce dernier. On obtient ainsi une surface
subdivisée en pistes (déplacement de la téte), elles-mémes divisées en secteurs
(trou de secteur).

Le disque tourne dans sa fourre & 300 tours/minute. Grdace & ce mouvement, ainsi
gu'a celui de la téte, on peut donc atteindre n'importe quel secteur.

L'index, la lecture des trous de secteur, la gestion intelligente du déplacement
de la téte, nous permettent de donner & chacun de ces secteurs une adresse bien
précise, On peut donc enreagistrer, puis retrouver facilement différentes infor-
mations a différentes places sur le disque.

Numeérisé par micromusee.ch

La position latérale du trou de lecture des secteurs et de 1'index permet de
détecter une introduction & 1'envers. Si la fente du "write protect” est
recouverte d'un élément non transparent, les circuits d'écriture du drive sont
inhibés, interdisant ainsi toute écriture accidentelle.

RECOMMENDATIONS: i1 est vivement recommandé de manipuler les disquettes avec
précaution.

Prendre bien garde & les protéger de la poussiére et de
la présence d'un champ magnétique élevé (haut-parieur, TV).
Ne jamais les tordre. Evitez de les laisser dans le drive,

mais rangez-les plutdt dans leur fourre , bien enfermées
dans une boite.

Ecrivez sur vos étiquettes de préférence avant de
les coller sur 1a disquette.

Ces précautions élémentaires vous éviteront bien des ennuis.

ORGANISATION DU DISQUE

Le "directory" occupe les trois permiers secteurs, piste 0.
Depuis le 4&me secteur, piste 0, jusqu'au 16% secteur , derniére piste
(numéro 40 & 77 selon les drives), la place est disponible pour les fichiers.

/” -m \ ‘ao ’/ / \
(it h/////////ﬂa : J"/

K :.._.j: J
R~
<~ /) NN
LW O N/ IMICROPOLIS
N/ \ _—y
\\4~h_ ;" Capacite:
- 16 x 77 x 256 bytes
= 315 kbytes

On emploie 1' organisation d'écriture contigué sur le disque.
Acmettons que nous écrivons un fichier (de longueur 200 blocs ou secteurs)

depuis le secteur 4, piste 8. La téte va écrire sur les secteurs 5 @ 16
(piste 8), puis cette piste étant pleine, va passer a la piste 9.

Numeérisé par micromusee.ch

8.2 SOFTWARE FLOPPY DISQUE

DESCRIPTION DES ALGORITHMES

LECTURE DE BLOCS: La lecture d'un bloc donne lieu 3 deux vérifications.

La premiére est la correspondance de 1'adresse de piste enregis-
trée sur le disque avec 1a mémoire de la position de la téte.

Le deuxiéme est la comparaison du checksum enregistré sur le disque
avec celui calculé a la lecture.

Indifféremment nour 1'une ou 1'autre de ces vérifications, on
effectue au maximum dix tentatives de lecture d'un bloc signalant
d chaque fois une erreur. Si c'est le cas, on considére que la

lecture est impossible et le travail ayant engendré cette lecture
est avorté, avec un message d'erreur de lecture.

Lorsque 1'on demande la lecture de plusieurs blocs, le hardware
permet une lecture consécutive de ces blocs. Donc, lors de la

lecture d'un fichier par tranche, on a intérét & lire des tranches
qui soient les plus longues possible.

ECRITURE DE BLOCS: L'&criture de blocs sur le discue s'effectue selon le
principe du "read after write" au niveau de la piste. Imaginons
qu'un ‘ordre d'écriture nécessite 4 pistes. On effectuera la lecture
de contrOle avant de changer de piste, ou si le travail est terminé.
S1 une erreur est détectée lors de la lecture de vérification, on
récrit @ nouveau les secteurs que 1'on a précédemment écrfts sur
cette piste. Cette opération peut étre répétée au maximum 10 fois.
Aprés quoil on considére que 1'écriture est impossible et le travail
ayant engendré cette écriture est avorté avec un messacge d'erreur
d'écriture. Dans le cas normal (pas d'erreur .), on obtient avec
cette méthode la vitesse d'écriture la plus rapide poss1b1e, soit
la moitié de la vitesse de lecture.

La remarque quant & la longueur des tranches (haut de la page) est
donc aussi valable.

COMPREZSION D'UN DISQUE: On emploie la méthode suivante: déplacement du
segment compris entre deux trous de la valeur du premier trou.
Ceci étant recommencé juscu'a ce que-1'on atteigne la fin du disque.

EXEMPLE:

Départ

' F [U/ l,! /

i) u,,// f/H’/f
1 fsegment 2 b'trqu 2 1 segment 3 ltrou 31

|segment 2[tr'mi i1
1ére étape

’lﬂ

|segment 1 [Segment 2[w,,trous, ,1+2] segment 3 Itmu 3,1

Wi /1! e R T R / it f” i il '"’ fill

Arrivée

//”// : /,fl,////, Iy ,r/ll’/ TR} ,},”".;";':..:.';" s 54
lsegment] ,Segment 2'}Segment 3 //”/////,// l:’h/ uN /:1572#3 ,;,l

8.2-1

Numeérisé par micromusee.ch

DESCRIPTION DES APPELS SYSTEME FLOPPY DISQUE

GENERALITES
FORMAT DES SECTEURS:

PREAMBLE DATA POSTAMBLE |

. synd¢hro
piste

Car
Adr.
Checksum

\

- PREAMBLE: cette zone est composée de 508 bytes de synchronisation.

Elle est utilisée en lecture par la microprogrammation du
controleur pour se synchroniser.

CARACTERE DE SYNCHRONISATION: 11 s'agit d'un 3778 qui est détecté par le
contrdleur pour la synchronisation mot.
Lorsqu'il est lu par le contrdleur, celui-ci active le flag SYNFLG dans

le S$SCONT et commence la lecture des informations écrites sur le
disque.

ADRESSE DE LA PISTE: ce premier byte sert, en lecture, & vérifier que 1'on est
bien sur la piste désirée.

DATA: cette zone contient 1'information mémorisée dans ce secteur SOuUS
forme de 256 bytes. C'est ce que 1'on appellera communément par la
suite un bloc.

CHECKSUM: ce byte, enregistré sur le disque lors de 1'écriture, est généré
par une somme des 256 bytes de data.
En lecture i1 permet de détecter une erreur de lecture.

POSTAMBLE: cette zone est générée automatiquement par le contrdleur.
I1 s'agit d'environ 50g bytes 0.
La génération automatique de cette zone par le controleur permet
1'écriture consécutive de plusieurs secteurs contigus entre eux.

8.2-2

Numeérisé par micromusee.ch

ORGANISATION DU DIRECTORY

o ow
QO D
0 o
O '~
W —
NOM EX RN DATE |
L0 U
- - .
sV TV TRY B T
O O b s+ B~ o
=<0 =0 o a0 o v
Ny s
o+
= c
L0 . o
QD L
(-

Total 24 bytes

ERRERERRER/IEEEERREEE ,

Secteur 0 | | Secteur 1 Secteur 2

Total 32 fichiers

NOM DU FICHIER: 8 caractéres ASCII au maximum. Le premier caractére doit
obligatoirement &tre une iettre.

EXTENSION: 2 caractéres ASCII au maximum, suivis d'un terminateur reconnais-
sable.

TERMINATEURS: les terminateurs reconnus sont: espace, retour de chariot,
tabulateur, barre oblique & droite, byte § et [.

ADRESSE DISQUE DE DEBUT ET FIN: les 4 bytes qui suivent 1'extension indiquent

les adresses (en blocs) ol commence le fichier sur le disque
et ou 11 finit.

ATTRIBUTS DU FICHIER: ce byte contient les attributs du fichier et donne
en tout temps 1'état de ce fichier (ouvert, fermé, protégé, etc.)

| . .0,C.P R,w[vrai = 1

faux 0

vl
R

fichier protégé en écriture
fichier protégé en lecture.

P = argument W et R protégé

C = fichier ouvert en écriture

0 = fichier ouvert en lecture
REMARQUES:

- W et R sont gérés par 1'appel 7CHATR.
P est géré par un appel séparé 7?CHATPT, ceci pour une plus grande
souplesse d'utilisation de ces attributs.

8.2-3
|\

Numeérisé par micromusee.ch

- C indique que le fichier est ouvert en écriture, tandis que O indique
qu'il est ouvert en lecture. En fait, 0 est un état virtuel dans le
directory. L'image vraie de 1'ouverture en lecture est le byte comp-

teur OPEN. Ce bit n'est activé en fonction du cempteur OPEN que dans
les routines de test des attributs ou dans 1'appel WARGS.

COMPTEUR OPEN: Ce byte indique le nombre d'ouverturesde ce fichier en lecture.
Zéro signifie qu'il est fermé.

BYTES VALIDES: C'est le nombre de bytes valides dans le dernier bloc

du fichier. I1 permet de gérer correctement le message
"end of file™.

DEBUT ET START: ces 4 byvtes donnent 1a position mémoire d'un fichier

objet et son adresse de départ. Le début égal & zéro indiaue
qu'il ne s'agit pas d'un fichier objet.

DATE: date de création du fichier

Numerisé par micromusee.ch

ORGANISATION DES F.I.T (file information table)
et issiosbitemivin o ieurnatt SO S LN loiiiin O L)}

Il existe deux FIT identiques pour les fichiers disque:

- une pour les fichiers ouverts en mode écriture (create),
. une pour les fichiers ouverts en mode lecture (open)

et une FIT spéciale pour les périphériques.

FIT FICHIERS DISQUE

Q
.
O
=
Répertoire =
software =
| NOM ,Ex“,,H'H.‘::!':..'l
| v o v o
O O T O T U O O
) £ - O Ol
Or~— Or— Or— O — @ >
e J e 2 Q= D Do
o T Y
= - - -
— =3 o o —
Ll.l8 L Q) Ll

Total 8 fichiers

ADRESSE DISQUE EN COURS: les deux bytes suivant 1'extension donnent
la fin actuelle du fichier, ou,si 1'on préfére, la prochaine

adresse disque disponible pour ce fichier

ADRESSE DISQUE DE FIN: ces deux bytes donnent 1'adresse disque limite de
la réservation pour ce fichier.

REPERTOIRE HARDWARE: 'c'est 1 'adresse du drive ou se trouve le fichier

REPERTOIRZ SOFTWARE: ces deux fois deux bytes donnent 1'adresse disque
du début et de la fin du répertoire software. Lorsqu'aucun
répertoire software n'est utilisé, ces adresses correspondent

au début et a Ta flin du disque

BYTES VALIDES: c'est le nombre de bytes valides dans le dernier bloc
dans le cas d'un fichier ouvert en lecture.

8.2-5

Numeérisé par micromusee.ch

FIT FICHIERS PERIPHERIQUES

r—+——r—+ = | €lément de LOCFIT
\—

T_ fadresse du drive
byte de controle

REMARQUE: La longueur de LOCFIT est fonction du nombre de périphériques traiteés.

Cette FIT, mémorisée en ROM, est transférée en RAM & 1'initialisation.
Elle permet d'effectuer la gestion des périphériques.

BYTE DE CONTROLE: ce byte sert & la fois de No de canal et de byte d'attribut
du fichier. Il a 1'organisation suivante:

§ toujours a 1, indique qu'il s’agit d’'un canal local
|

.1.0.D.0.C.D.R.W,

fichier protégé a 1'écriture

fichier protégé a la lecture

fichier ouvert en écriture

Tichier ouvert en lecture

bytes utilisés pour différencier les fichiers périphériques
entre eux

OO X0 &
LI | B | N | |

ADRESSE DRIVER: c'est 1'adresse du driver correspondant.
La distinction des travaux a effectuer soit @ 1'ouverture, soit a la
fermeture, ou le travail courant est fait au niveau des drivers de la
maniére suivante:

A=0 travail d'ouverture

Entrée dans le driver carry clear AZ0 travail de fermeture

Entrée dans le driver carry set Travaill courant

3.2-6

Numeérisé par micromusee.ch

8.3 SAMOS, SMAKY AND MICRO-FLOPPY OPERATING SYSTEM: DESCRIPTION GENERALE

8.3 DESCRIPTION GENERALE

SAMOS est un petit "operating system" d'une taille d'environ 4 kbytes rési-
dant depuis 1'adresse 10000 du SMAKY6. Il permet la gestion de fichiers
disques et fighigﬁg_gggighgrigggg) sous la forme d'appels utilisant Te
restart 20 du SMAKY6.

Les appels SAMOS auront donc la forme:
?APPEL SAMOS = No appel * 400 +RST 20

Par exemple:
?CREATE = 23*400+327

Lgs caractéristiques fondamentales de SAMOS sont: 1'autoparamétrisation, 1'organisa-
tion contigué, deux types d'accés au fichiers et des indirections sur des routines
de base.

8.3.1 L'autoparamétrisation

e — s %~

A 1'enclenchement du SMAKY6, le programme contenu dans la ROM fantOme

charge le software de base (SYSTEM et SAMGS) en mémoire vive et exécute

le bootstrap. C'est durant 1'exécution de ce bootstrap que SAMOS va
s'autoparamétriser. Il va d'abord s'annoncer sur 1'&cran par SAMOS rév.-vers.
IT réserve ensuite une place pour ses différents buffers de travail, ses

FIT (file information table) et ses paramétres en RAM. Il va ensuite

procéder aux initialisations des RESTART qu'il utilise, soit le 10 pour le

hardware et le 20 pour le software.

L 'autoparamétrisation proprement dite consistera a reconnaitre le nombre de drives
actifs sur 1 installation. Ceci est fait lors de la phase d'initialisation des,
drives. Cette initialisation consiste & amener la téte de lecture des drives en
piste § et d'initialiser le compteur de pistes en mémoire & zéro. Les adresses

de drive ol ce travail ne peut pas etre effectué sont considérés comme invalides
et ne seront pas reconnues ultérieurement par le systéme.

SAMOS signale ces adresses en envoyant sur 1'écran la remarque NO DXn, n étant

1'adresse non reconnue. On peut donc ainsi changer le nombre de drives sans

modifier SAMOS.

6.3.2 APPEL DU PROGRAMME CLI.SY

Mous venons de voir tous les travaux d'initialisation du bootstrap. Cependant
a 'a Tin de ces initialisations, cet ordre ne se termine pas en revenant au

SYSTEME. 11 cherche & charger depuis le disque tout d'abord un programme

s'appelant ST.SY (programme de start-up). Si ce programme n'existe pas,
i1 tente alors de charger le programme CLI.SY. En cas d'insuccés, il
revient alors au SYSTEME en donnant Te message ERROR suivi du numéro de

1'erreur rencontreée.

Le programme ST.SY permet d'intercaler une fonction suppiémentaire avant
avant le chargement du CLI.SY, par exemple, chargement de MATPAC.SY ou affi-

chage d'un texte message par exemple.

Le programme CLI.SY (command line interpreter) permet de faire effectuer
3 SAMOS toutes sortes de transactions sous forme de 1igne de commande

(voir le mode d'emploi de CLI.SY).

8.3-1
[

Numeérisé par micromusee.ch

8.3.3 ORGANISATION CONTIGUE

SAMOS est basé sur une organisation contigué. Ceia veut dire que les blocs que

1'on écrit sur le disque sont contigus entre eux. Contrairement a 1'accés aléatoire
ou 1'on saute de bloc vide & bloc vide, ceux-ci n'étant pas forcément contigus,
on ecrit dans un espace libre réservé a 1'avance par tranches de blocs contigus

entre eux, les tranches étant elles-mémes contigués jusqu'd@ la fin de 1'espace
Libre réservé.

nloc
A P+ A

Organisation aléatoire: on écrira dans 1,2,3 etc. blocs successivement libres.

L) résexvation
=18 : e |

Y77 2227272 22 2% 1. < 3 4 5 6 7 V1LY L

2L I LA L4 (/I /e /e

Organisation contiqué: on écrira dans 1,2,3, etc. blocs contigus libres dans la
réservation préalable.

On voit donc que 1'organisation choisie a 1'inconvénient de nécessiter une
réeservation préalable. Par contre, ce type d'organisation permet une plus grande

rapidité d'accés aux informations. Ce critére fut décisif étant donné la relative
lenteur des accés disque avec des micro-floppy.

8.3.4 Les acces

Comme les micro-floppy sont 1a mémoire de masse du systéme, il est important d'en
tirer le meilleur parti possible, du point de vue rapidita.

On peut utiliser deux types d'accés:

. L'accés rapide: cet accés se fait par blocs physiques du disque (4008) directement
de disque a mémoire utilisateur ou vice versa.
Cet accés permet de tirer le meilleur profit de 1'organisation
contigue décrite précédemment, puisque, dans le méme passage
de lecture (méme tour de disque) on arrive a traiter successi-
vement chaque bloc. |
La lecture de tous les secteurs .d'une piste soit 16.x 256. = 4096.
bytes nécessite 200ms. Cependant cet accés, par le fait qu'il
travaille sur des blocs physiques du disque est plus difficile a
utiliser du point de vue software.

. 1"accés lent: cet accés se fait par byte ou par lignes.

[l utilise des buffers intermédiaires de 1 bloc. IT ne peut
donc lire sur le disque dans le méme passage (méme tour)

qu'un bloc @ la fois. Il est donc 16x plus lent que 1'accés
précédent.

Par contre, 11 est complétement affranchi des contraintes
physiques du disque, et permet de travailler totalement en
fonction des informations que 1'on accéde sur le disque.

8.3-2

Numeérisé par micromusee.ch

8.3.5 Indirections sur les routines de base

Différentes indirections sur des routines de base permettent, pour des

cas bien particuliers) de s'affranchir totalement de la structure et des
contraintes de SAMOS et d'accéder directement sur le disque soit en écriture
soit en lecture. Ces indirections sont décrites en détail plus loin.

8.3.6 Les limites de SAMOS

- Les limites de SAMOS sont les suivantes.
Il peut reconnaitre jusqu'a trois drives "on line".

REMARQUE: 11 faut cependant noter que dans la version standard actuelle,
SAMOS ne reconnait cue deux drives, car la ligne du troisiéme
drive a été utilisée pour gérer le signal HEADLQAD qui
permet une optimalisation de 1'accés inter-drive pour les

drives simple face. Pour les drives double face, cette Tigne
est utilisée par la ligne de commande de 1a 2éme t2te du drive.

Chaque répertoire peut avoir un maximum de 32 fichiers.

SAMOS dispose de 4 buffers d'entrée/sortie disque; les FIT (file information
table) d'écriture ou de Tecture peuvent gérer chacune 8 fichiers disque
simultanément. Le nombre total de fichiers disque qui peuvent etre traités
simultanément dépend de la saturation, soit des FIT, soit des buffers.

Par exemple, on peut traiter simultanément 8 fichiers disque en écriture,
ouverts en accés par blocs, et 8 fichiers disque en lecture, ouverts en

acceés par blocs, puisque ce type d'accés n'utilise pas les buffers 1/0.

4 Buffers 1nutilisés

Par contre, si 1'on passe & 1'accés par byte ou ligne, on ne pourra avoir
N - - '

simultanément que 4 fichiers ouverts dans ce type d'accés. Dans 1'exemple

ci-dessous nous avons deux fichiers ouverts en écriture et 2 en lecture.

libre par bloc uniquement

—

e R T - FIT écriture partiellement pleine
T libre par bloc uniquement
. t A ; ;.' i .”-‘1 FIT lecture

partiellement pleine

‘ . s Buffers tous utilises

On pourrait par contre rajouter a la configuration ci-dessus encore S1X

fichiers en lecture en accés par blocs et six fichiers en écriture en
accds par blocs. Toutes les combinaisons intermédiaires sont évidemment

permises.

8.3-3

Numeérisé par micromusee.ch

8.3.7 Les fichiers périphériques

Lgs appels systéme de SAMOS permettent d'accéder non seulement les fichiers
disque, mais également des fichiers périphériques.

On peut accéder & ces fichiers périphériques indifféremment avec 1'accés par
bloc ou 1'accés par byte ou ligne.

Dans les ordres qui permettent de travailler avec les périphériques, on accede
d ceux-ci en remplacant le REP: pPar ¥nom_du_périphérique.

Les périphériques décodés sont les suivants:

SPR (paper reader) USART 4 input

SPP (paper punch) USART 4 output

SPI (parallel 1in) interface // input

SPO (parallel out) interface // output

SMI (modem 1in) USART 6 input

SMO (modem out) " USART b6 output

SLP (1ine printer) output Overlay sur fichier driver LP.SY
SKEY(clavier) input

$DIS(display) , output

On peut avorter ou terminer 1a transmission avec un périphérique
en pressant sur la touche (KILL)

Le périphérique envoie alors un "end of file" a SAMOS. Dans le cas!de
transmission avec un périphérique en entrée ($PR et $PI), lorsque la trans-
mission est terminée (plus de son dans le haut-parleur) on signale normale-
ment la fin en pressant {KILL), ceci provoque la fin de 1'exécution de
1'ordre (fermeture des fichiers). Dans le cas de transmission avec un péri-
phérique en sortie il n'y a normalement pas lieu de presser une touche, puisque
le "end of file" sera donné par le fichier que 1'on transmet. On peut cependant

avorter la transmission en pressant KILL

Numeérisé par micromusee.ch

8.3.8 Principes généraux des appels SAMOS

Comme pour les appels SYSTEME, on est automatiquement "interrupt on" au
retour d'un appel SAMOS.

Les appels SAMOS affectent toujours les registres A et F. Au retour d'un appel
SAMOS, Te carry est utilisé pour signaler une erreur éventuelle.

Un retour carry set indique qu'une erreur s'est produite, le numéro de cette

erreur se trouvant alors dans le registre A. Un retour carry clear indique
évidemment un bon déroulement de 1'appel.

La plupart-des appels SAMOS ont des paramétres en entrée et en sortie.

La restitution des paramétres en sortie peut etre liee a la condition du bon
déroulement ou non de 1'appel SAMOS. D'une maniére générale, les registres, -
a part A et F, qui ne sont pas utilisés pour rendre des paramétres en sortie

ne sont pas affectés. Les registres prévus pour ne rendre des paramétres qu'en
cas de bon déroulement de 1'appel ne seront affectés que si 1'appel s'est

effectué correctement. Dans le cas inverse (paramétres de sortie en cas d'erreurs)
Ce principe joue également.

Lors de 1 exécution d'un appel SAMOS qui nécessite un accés disque, SAMOS
supprime 1'in§errugtion 50Hz et se met en mode alpha uniquement.

Ceci veut dire que le clavier n'est plus balayé durant 1'accés disque, et 1'écran
graphique plus visible.

Pour garantir le bon fonctionnement des accés disque, 1'utilisateur qui aurait
une configuration de systéme utilisant une autre interruption hardware (exemple:
autre prériphérique générant des interruptions) doit supprimer cette autre

interruption avant d'effectuer un appel SAMOS nécessitant un accés disque.
Ceci aftin de garantir la plus haute priorité aux acces disque.

8.3.9 Organisation des disquettes

M

Chague disquette peut contenir des fichiers répertoires qui peuvent cqntgnir
chacun 32 fichiers. Parmi ces fichiers, il peut y avoir également des fichiers

répertoires qui peuvent contenir aussi d'autres fichiers répertoires etc..

On peut donc créer une structure arborescente de répertoires et de
sous—répertolres. :

DXO0: } rép "hardware"
/ \

TOTO: TUTU:

/ \ v / \ } rép "software”
BOBO: BUBU: BOBO: BUBU :

etc.

Traduction du schéma ci-dessus:

gur la diguette en DX0: 11l y a notamment deux fichiexrs répertoires TOTO:DR.et
TUTU.DR qui contiennent chacun entre autres deux fichiers sous—-répertolres
BOBO.DR et BUBU.DR (l'utilisation du méme nom n'est pas interdite).

B3 s

Numérisé par micromusee.ch
8.4 LES APPELS SAMOS .

8.4.1 DESCRIPTION GENERALE DES PARAMETRES
8.4.1.1Pointeur au nom

Par pointeur au nom, on entend un pointeur d'une chaine de caractéres ASCII,
qui peut contenir les informations suivantes pour un fichier disque:

. 1ien du répertoire

. nom du fichier

. extension du nom de fichier disque

: réservatiqn de blocs

Ou simplement pour un périphérique:
. noin du périphérique.

Cette chaine ASCII peut avoir au début des espaces ou des tabulateurs, ils
seront automatiquement sautés.

Elle doit par contre &tre terminée par un des caractéres suivants: SPACE,
TAB, CR, SLASH, ZERO.

S1 1a chaine ASCII contiént plusieurs informations, elles ne devront pas etre
separées par des caractéres non significatifs, mais obligatoirement mises

bout a bout. Les lettres minuscules non accentuzes sont acceptées mais transformées
automatiquement en majuscules par le systéme. La méme information peut donc &tre
indifféremment en minuscules ou en majuscules.

Lien du répertoire: On distingue deux types de répertoires:
au plus bas niveau du systéme les répertoires hardware qui ont T1a forme DXn:
n étant de numéro du drive (@ ou 1) que 1'on désire accéder. Lorsque cette
information est omise, SAMOS prend DX@: par défaut.

Les répertoires software créés par 1'utilisateur, qui sont des fichiers
avec |'extension spéciale .DR

L'accés a ces répertoires a@ la forme REP: REP étant Te nom du
fichier répertoire. La syntaxe de ce nom est donc celle d'un nom de fichier

(voir ci-dessous).

On peut créer des répertoires a 1'intérieur d'un répertoire, ce qui permet
d'obtenir une structure arborescente (voir § 8.3.9).

Le 1ien d'un répertoire pourra donc avoir la forme suivante DX1:TOTO:TITI:
On accéde dans cet exemple au sous-répertoire TITI.DR dans le répertoire
TOTO.DR sur la disquette du drive DX1:

Mom du fichier disque: i1 est formé d'un maximum de 8 caractéres.
Le premier doit obligatoirement etre une lettre, les suivants

des lettres cu des chiffres.

Extension du nom du fichier disque: elle est formée de deux caractéres au
maximum qui peuvent etre soit des lettres, soit des chiffres.

E1le est précédée obligatoirement par un point.

Flle peut etre omise. L'extension sert généralement a caractériser
le genre de fichier.

Exemple:
Le fichier source TOTO qui se trouve sur un disque INSere

dans le drive d'adresse) sera parfaitement caractérisé par
les chaines ASCII suivantes:

ASCII /<TAB>{(SPACE>DXQ:TOTO.SRCCR»/

ASCIZ /€TAB»TOTO.SR/
.ASCIZ /toto.sr/

etc.
8.4-1

Numeérisé par micromusee.ch

L "extension .MC, réservée aux MACROS, est reconnue pas SAMOS, et elle est
_reset protected” a la lecture. En effet, si un programme, appelé par une
MACRO effectue un appel RESET, i1 ne faut pas que le fichier MACRO soit

fermé par cet appel, sous peine d'avorter 1a suite de 1'exécution de 1la
MACRO.

Réservation de blocs: pour les noms de fichier en création exclusivement

on peut accoller une réservation de blocs entre
crochets.

Cette réservation a le méme effet que celle passée

par le paramétre d'entrée correspondant (voir 8.4.1.2
et appel CREATE ou CRBLK).

Cependant, la réservation entre crochets n'est
prise en considération que si le paramétre d'en-

trée de 1'appel de création de ce fichier est

égal a zéro.
Exemples de réservations entre crochets:
TOTO.SR[100]

TOTO [28]
T0T0.LS (1281291

lgnoré pris en compte

TOTO.SR|C]

} réservation par detaut,
soit la plus grande place sur deux

Nom du périphérique: i1 est simplement formé des lettres caractérisant le
périphérique précédé du signe §.

Pour les appels SAMOS qui effectuent un travail au niveau d'un réper

toire, et non pas au nmiveau d'un fichier, i1 n'est pas nécessaire (mais pas
interdit:) de spécifier un nom de fichier. Seule 1'information "lien du répertoire"
sera prise en compte. Dans le cas du répertoire hardware DX@:. nous savons que cette

information-peut etre omise. Ainsi, dans ce cas précis, il suffirait que le
pointeur au nom soit sur un terminateur (CR, SLASH, ZERO).

‘§.4.1.2 Numéro de canal

La création ou 1'ouverture (lecture) d'un fichier nécessite un nom. Si 1'on
crée un fichier, ce sera le nom que 1'on désire attribuer @ ce fichier; si
1'on ouvre un fichier, ce sera le nom qui avait été donné & la création.

Si 1'on crée, ou 1'on ouvre un fichier, c'est pour y .écrire ou y Tire des
informations. Pour faire ces opérations, il faudra @ nouveau caractériser
ce ficnier, puisque 1'on peut avoir plusieurs fichiers ouverts ou créés
en méme temps.

Pour ce faire, SAMOS, au moment de la création ou de 1'ouverture de ce

fichier, attribue un numéro de canal qu'il rend & 1'utilisateur. C'est dés lors
ce numéro qui caractérisera le fichier et qui sera utilisé pour effectuer les
opérations d'écriture, de lecture et 1'opération finale de fermeture.

I1 est plus facile de manipuler un numéro que de travailler avec un nom.
D'autre part, comme un numéro de canal est toujours non nul, on peut utiliser

le zéro pour signaler que le canal n'est pas ouvert (mise a zéro préalable

et @ 1a fermeture des positions mémoire utilisées pour mémoriser ces numMéros
de canaux). |

8.4-2

L\

Numeérisé par micromusee.ch

Format du No de canal

Le numéro de canal contient d'autre part des informations qui caractérisent le
fichier concerné et qui peuvent etre testées par 1'utilisateur.

Numéro de canal fichier disque AT A XX XX x| (1 byte)
e g

P=ft1ichier disque (1=périphérique)~__r1 T

P=lecture 1=écriture

P=accés par bloc 1=accés par byte ou 1igne

numérotation distinctive

Numéro de canal fichier périphérique 1DDOCDRW] (1 byte)

W = fichier protégé a 1'écriture

fichier protégé a la lecture

I

fichier ouvert en écriture

fichier ouvert en lecture

R
C
0
D = bit de distinction

8.4.1.3 Nombre de blocs a réserver

C'est 1e nombre de blocs physiques du disque (400g) en binaire que 1'on
désire réserver & un fichier que 1'on crée. On peut obtenir une réservation
par défaut en mettant ce paramétre a zéro. A ce moment SAMOS réservera la
moitié de la plus.grande place vide.

Dans le cas contraire, SAMOS effectuera la réservation dans le plus petit-
trou possible.

8.4 1.4 Pointeur en mémoire

Ce pointeur est sur la premiére position de 1'endroit ot, selon que 1'on Tit
ou aue 1'on écrit, on va délivrer ou chercher 1'information qui fait 1'objet du
transfert.

8.4.1.5 lluméro de canal

W—_——‘

Ce paramétre est rendu par SAMOS aprés 1'ouverture ou !a créa?ion d'un fichier.
I1 est utilisé par la suite pour communiquer avec le dit fichier.

8.4-3

Numeérisé par micromusee.ch

8.4.1.6 Nombre de bytes @ Tire ou & écripg

Comme nous 1'avons vu, SAMOS, peut travailler avec un type d'accés rapide par
blocs physiques du disque. Cependant dans ce type d'accés, 1'unité de travail
est le bloc, soit 400g. I1 est rare que les fichiers avec lesquels nous
allons travailler aient une taille multiple d'un nombre de blocs. Aussi, si

nous ecrivons ou lisons un fichier par ce type d'accés, il faudra respecter les
deux régles suivantes:

. En acceés par blocs, on lira toujours un fichier par tranchesmultiple de 400,

. En acces par blocs en écriture, seule la derniére tranche écrite pourra ne pas
etre multiple de 400g.

Pour 1'appel UPDATE, spécifiez toujours de préférence un multiple de 4008,
surtout a 1'écriture car on écrira toujours le nombre supérieur de blocs.

La taille d'un fichier (nombre de bytes dans le dernier bloc) n'est pas
modifiée (et pas modifiable) par 1'appel UPDATE. En effet, on accéde en
UPDATE dans un fichier avec une ouverture en lecture par bloc (OPEBLK).

Sa taille a été définie une fois pour toutes lors du CLOSE qui a suivi
sa creation.

S1 1'on utilise 1'accés par byte, on est évidemment 1ibre des contraintes décrites
ci-dessus, mais la vitesse d'accés sur le disque est plus lente.

8.4.1.7 Nombre de bytes lus ou écrits

Ce paramétre est rendu a la fin d'un travail de lecture ou d'écriture. En acceés
par blocs en écriture, ce paramétre est toujours un multipie entier de 400g
correspondant aux blocs effectivement écrits sur le disque. Lorsque la derniére
.tranche écrite dans le fichier n'est pas multiple de 4008, le nombre de bytes
valides dans le dernier bloc est mémorisé par SAMOS, et Sera écrit dans le
directoire au moment de la fermeture de ce fichier. Le nombre de bytes écrits
étant alors le multiple supérieur de 4008 du nombre de bytes a écrire spécifié
en entree.

Par contire, en accés par blocs en lecture, au moment du "end of file", ce para-
métre nous donne le nombre de bytes valides par tranche lue, qui n'est pas
forcément un multiple de 4008. Il est important de savoir que par ce type
d'accés, le nombre de bytes effectivement tranférés est le multiple supérieur

de 4008 au nombre de bytes spécifié. En d'autres mots, le dernier bloc est trans-
féré intégralement et peut contenir des bytes non significatifs.

Si 1T'on utilise 1l'accés par byte, ce paramétre correspond simplement au nombre de
bytes effectivement lus ou écrits.

Au sujet de ce paramétre de retour, lisez également la description des messages
d'erreur "end of file" et "file end overflow".

8.4.4

"
/0

Numeérisé par micromusee.ch

8.4.1.8 Adresse de début, adresse de start

. = 2 , : . .
Le f1ch1er.que 1'on crée sur_le disque peut contenir un programme sous forme d'une
image memoire. Dans ce cas, il faut que SAMOS puisse connaitre ou se situe le

programe en memoire, c'est-a-dire 1'adresse de début, et ol commence son exécution,
C est-a-dire |'adresse de start.

gécifiés au moment de la fermeture du fichier (appel
SOt rets & zhre. ans le directoire. Pour 1'appel RESET ces paramétres

Sl lg fichier que |'on traite n'est pas un programme sous forme d'une image
m?m01re,:1a valeur du paramétre 'adresse de start' est indifférente: par contre
] adfesse de début doit valoir zéro. SAMOS saura ainsi que ce fichier ne
contient pas un programme image mémoire exécutable et i1 pourra ainsi assurer
une protection en cas de tentative de chargement et d'exécution de ce fichier.

8.4.2 DESCRIPTION DES MESSAGES D'ERREUR

—*—-————-_—“____——___—_-——_____—

Les messages d'erreur en clair sont contenus dans le fichier ER.SY.

L'appel SAMOS ?ERROR (voir 8.4.28) utilise ce fichier pour traduire
le message.

No 1: Fichier protégé @ 1'écriture (write protect file)

Ce message signifie que le fichier traité est protégé a 1'écriture.

On recoit ce message si 1'on tente de tuer ce fichier, ou de modifier son nom.
No 2: Fichier protégé a 1a Tecture (read protect file)

Ce message: "fichdler protégé a la lecture" apparait si 1'on tente d'ouvrir ce
fichier, de charger et d'exécuter ce fichier.

No 4: Fichier permanent (permanent file)

Ce message signifie que les arguments du fichier traité sont protéges.
On recoit ce message si 1'on tente de changer les attributs du fichier.

No 5: Ligne trop longue (line too long)

Ce message apparait lorsque 1a ligne traitée par 1'un des appels WRLINE ou RDLINE
est plus Tongue que 256 caracteres. -

Mo 6: Fin du fichier (end of file)

Ce messace signifie que 1'on a atteint 1a fin du fichier en lecture.

On recoit ce message lorsque le nombre de bytes & lire correspond exactement,
ou dépasse, le solde de bytes @ lire dans le fichier. Le parametre de retour
"nombre de bytes lus" (8.4.1.6) donne alors le nombre de bytes valides.

Mo 7: Fichier plein (file end overflow

Ce message signifie que 1'on a tenté d'écrire par dessus la fin d'un fichier en
scriture. Le paramétre de retour "nombre de bytes écrits" (8.4.1.6) donne le
nombre de bytes effectivement écrits.

Numeérisé par micromusee.ch

No 10: Ouvert en écriture

On recoit le message "fichier ouvert en écriture" si 1'on tente de faire
toute autre opération qu'une écriture ou une fermeture de ce fichier.

No 11: Fichier existant (file already exist)

C? message signifie que le nom du fichier traitéd existe déja dans le
repertoire. On recoit ce message si 1'on tente de créer un fichier sous

Un.nom.qui existe déja, si 1'on tente de renommer un fichier avec un nom
Gul existe déja.

No 12: Fichier inexistant (file does not exist)

W

C? message signifie que le nom du fichier traité n'existe pas dans le
repertoire. On recoit ce message si 1'on tente d'ouvrir, de renommer,
de changer les attributs ou de tuer un fichier qui n'existe pas. ‘

No 13: Nom illégal (illegal filename)

Ce message signifie que Te nom ou 1'extension du fichier traité ne
respecte pas la syntaxe (8 caractéres au maximum, premier caractére
obligatoirement une lettre, pas de signes spéciaux, extension maximum
deux caractéres, lettres ou chiffres).

No 14: Réservation ill1égale (I1legal reservation)

Ce message signifie que la réservation donnée entre parenthéses carrées
ne respecte pas la syntaxe. Exemples: lettre au lieu de chiffre, oubli
de la parenthése de fermeture, etc.

No 16: Fichier non exécutable (cannot load file)

Ce message signifie aue le fichier traité ne contient pas un programme image
mémoire exécutable (1'adresse de début dans le directoire égale @ zéro).
On recoit ce message si 1'on tente de charger et d'exécuter ce genre de fichier.

No 17: Hors du fichier (out of file)

Ce message concerne uniquement 1'appel SAMOS UPDATE. Il signifie que le
numéro de bloc spécifié est en dehors des limites du fichier.

Mo 20: Ouvert en lecture (file in use for reading)

Ce message signifie que le fichier traité est ouvert en lecture.
On recoit ce message si 1'on tente de faire toute autre opération qu'une
ouverture, une lecture ou une fermeture de ce fichier.

No 21: Répertoire inconnu (unknown device

Ce message signifie cue 1'on tente d'accéder a un répertoire hardware ou
software qui n'existe pas.

No 22: Erreur de canal channel error

Ce message signifie que le numéro de canal que 1'on a spécifié n'existe pas
ou que ce canal n'est pas ouvert.

No 23: Fichier(s) ouvert(s) (file(s) in use

Ce message signifie qu'il v a des fichiers ouverts. On recoit ce message s
1'on tente d'effectuer une compression de disque alors que les fichiers sont
encore ouverts.

8.4-6
LC

Numeérisé par micromusee.ch

No 24: Plus de canal libre (all channels in use)

Ce message veut dire que 1'on a saturé les FIT (file information table)
ou les buffers input/output (voir les limites de SAMOS, 3 8.3.6).

On recoit ce message si 1'on tente d'ouvrir ou de créer un fichier alors
qu'il n'y a pas de canal disponible.

No 25: Répertoire plein (directory full)

Ce message signifie que le réper?bire contient déja 32 fichiers.
On recoit ce message si 1'on tente d'en créer un nouveau.

No 26: Disque-plein (disk full)

Ce message veut dire que 1'on ne peut pas réserver la place demandée sur Te
disque. Ceci signifie que le nombre de blocs a réserver est supérieur
au nombre de blocs du plus grand trou dans le répertoire hardware ou software.

No 30: Floppy hors service (device timeout)

Ce message veut dire que 1'adresse de ce drive est reconnue, mais qu'en
revanche il ne fonctionne pas.

No 31: Disque protégé (write protect tab set)

Ce message signifie que Te disque a un cache de protection @ 1'écriture.
On recoit ce message si 1'on tente, sur ce disque, de faire autre chose
qu ‘'une ouverture, une lecture ou une fermeture de fichier.

No 32: Erreur d'écriture (write error)

Ce message veut dire que SAMOS n'a pas réussi a écrire correctement un
bloc durant un accés disque en écriture. Le travail a donc été avorté.
Cette erreur est fatale .lors d'une compression de disquette.

Lors d'une phase d'écriture dans un fichier, les blocs écrits durant cette
phase sont irrécupérables par SAMOS.

No 33: Erreur de lecture (read error)

Ce message signifie que SAMOS n'a pas réussi a lire correctement un bloc
durant un accés disaue en lecture. Le travail a donc été avorte.
Cette erreur est fatale Tors d'une compression de disque.

No 34: Pas d'exécution (no starting address)

Ce message sianifie que le fichier que 1'on a chargé n'a pas d'adresse de
start (adresse de start égale da 1).

Le fichier ER.SY contient encore dlautres messages utilisés par d'autres
programmes. Pour le détail de leur signification, se référer aux notices
de ces programmes.

Messages du CLI

No 35: Mauvais chargement (bad load)
Mo 36: allocation pleine (buffer full)

8.4-7

Numeérisé par micromusee.ch

Messages de MATPAC (appels mathématiques)

No 37: Division par zéro (divide by zero)

No 40: Trop grand (overflow)

No 41: Trop petit (underflow)

No 42: Nombre illégal (illegal number)

No 43: Racine négative (negative square root)
No 44: Log négatif (negative logarithm)

Messages de MATPAC (appels fichier & structure de record)

No 45: Longueur nulle (record length null)

No 46: Pas d'enregistrement (zero record)

No 47: Fichier incompatible (no record file)

No 50: Allocation trop petite (buffer too small)

No 51: Recherche illégale (illegal search parameters)

Messages divers

Mo 110: Ordre illégal (illegal order)
No T14: Erreur systéme (system error)
No 115: Programme détruit (map error)

8.4-3 APPEL 9§ 7CREBLK

Ouveg%ure d'un fichier disque ou périphérique en écriture avec accés rapide
par blocs. .

Paramétres d'entrée DE: pointeur au nom

BC: bloc @ réserver
(BC=@ réservation par défaut)

Parameétres de sortie: A: numéro de canal

Liste des erreurs possibles pour cet appel:

1 Write protect file
10 File in use for writing
1T File already exists
13 Il1legal T1lename

14 I11egal reservation
21 Unknown device

24 A11 channels 1in use
25 Directory full

26 Disk full

30-Device timeout

31 Virite protect tab set
32 Virite errar

33 Read error

. une erreur disque a 1'écriture pour cet appel est fatale car

Remarques:
elle concerne 1'écriture du directoire sur le disque

les erreurs No 1 et 10 concernent les fichiers périphériques:
si le périphérique spécifié n'est pas un périphérique de sortie
on a 1'erreur 1 ou si le périphérique est déja ouvert, on a
1'erreur 10.

3.4-8
Y)

8.4-4 APPEL 23 ?CREATE Numerise par micromusee.ch

Ouverture d'un fichier disque ou périphérique en écriture avec accés lent
par bytes ou par lignes.

Paramétres d'entrée: DE pointeur au nom

BC bloc a réserver
(BC=@ réservation par défaut)

Paramétre de sortie: A numéro de canal

Liste des erreurs possibles pour cet appel

1 kWrite protect file
10 File in use for writing
1T File already exist
13 I1legal filename

14 Illegal reservation

21 Unknown device

24 All channels in use
25 Directory full

26 Disk full

30 Device timeout

31 write protect tab set
32 Write error

33 Read error

Remarques: . une erreur disque & 1'écriture pour cet appel est fatale
car elle concerne 1'écriture du directoire sur le disque

. Les erreurs No 1 et 10 concernent les fichiers périphériques:
si le périphérique spécifié n'est pas un périphérique de sortie
on a l'erreur 1 ou si le périphérique est déja ouvert, on a
1 'erreur 10.

8.4-5 APPEL 35 ?CDIR
Création d'un fichier répertuoire.
Paramdtres d'entrée: DE pointeur au nom

BC bloc @ réserver
(BC=@ réservation par défaut)

Liste des erreurs possibles pour cet appel

11 File already exists
13 1Illegal filename

14 11legal reservation
21 Unknown device

24 A1l channels in use
25 Directory full

26 Disk full

30 Device timeout

31 Urite protect tab set
32 \lrite error

33 Read error

Remarques: . pour un fichier répertoire 1'extension du nom du fichier
sera obligatoirement .DR
La taille utile sera la réservation moins les trois blocs
nécessaires au directoire

. pour d'autres applications, on peut créer avec cet appel
des fichiers ayant une autre extension que .DR ou une
taille inférieure & 3 blocs. L'appel ne génére pas d'erreur
dans ces deux cas la. 3 4.9

e W

Numeérisé par micromusee.ch

3.4.6 APPEL 3 ?0PEBLK

Ouverture d'un fichier disque ou périphérique en lecture avec accés rapide par
blocs.

Paramétre d'entrée: DE: pointeur au nom

Paramétre de sortie: A: numéro de canal

Liste des erreurs possibles pour cet appel:

2 Read protect file
12 File does not exist
13 Illegal filename

20 File in use for reading
21 Unknown device

24 All channels in use

30 Device timeout
32 ¥Write error

33 Read error

Remarques: . Une erreur disque a 1'écriture pour cet appel est fatale, car elle
concerne |'écriture du directoire sur le disque

. Les erreurs No 2 et 20 concernent les fichiers périphériques:
si le périphérique spécifié n'est pas un périphérique d'entrée, on a
1'erreur 2, si le périphérique est déja ouvert, on a 1'erreur 20.

8.4.7 APPEL 24 ?0PEN

OQuverture d'un fichier disque ou périphérique en lecture avec accés lent
par byte ou par ligne.

Paramétre d'entrée: DE: pointeur au nom
Paramétre de sortie A: numéro de canal

Liste des erreurs possibles pour cet appel

2 Read protect file
12 File does not exist
13 Illegal filename
20 File in use for reading
21 Unknown device
24 A1l channels 1in use
30 Device timeout
32 UYrite error
33 Read error

Remarques: . Une erreur disque a 1'écriture pour cet appel est fatale, car elle
concerne 1'écriture du directoire sur le disque.

. Les erreurs No 2 et 20 concernent les fichiers périphériques:
si le périphérique spécifié n'est pas un périphérique d'entrée
on a 1'erreur 2, ou si le périphérique est déja ouvert, on a
1'erreur 20.

8.4.10

Numeérisé par micromusee.ch

8.4.8 APPEL 4 ?CLOSE

- . e . N
rermeture d un f]ch1er disque ou périphérique ouvert soit en lecture , soit en
ecriture, et indépendamment du type d'accés.

Paramétres d'entrée: A: Numéro de canal
Pour Tes 8C: ad y
fichiers disque) BL: adresse de début ichier bina Ser
e anant DE: adresse de staprt fichier binaire en écriture

fichier source BC=0
DE: quelconque

Liste des erreurs possibles pour cet appel

22 Channel error

30 Device timeout
32 lNrite error

33 Read error

Remarque: . une erreur disque a 1'écriture pour cet appel est fatale, car elle
concerne |'écriture du directoire sur le disque.

8.4.5 APPEL 6 ?RDBLOC

Lecture d'un fichier disque ou périphérique ouvert en accés rapide
par blocs.

Paramétres d'entrée: A: No de canal
BC: nombre de bytes & lire (REMARQUE IMPORTANTE: toujours
multiple de 400g (voir 8.4.1.5)

DE: pointeur en mémoire

Paramétres de sortie: BC: nombre de bytes lus

Liste des erreurs possibles pour cet appel

6 End of file

22 Channel error

30 Device timeout
33 Read éerror

8.4-11

Numeérisé par micromusee.ch

8.4.10 APPEL 25 ?RDBYTE

Lecture par byte d'un fichier disque ou périphérique ouvert en accés lent
par byte ou par ligne.

Paramétres d'entrée: A: numéro de canal

BC: nombre de bytes & lire
DE: pointeur en mémoire

Paramétre de sortie : BC: nombre de bytes lus

Liste des erreurs possibles pour cet appel

M

6 End of file

22 Channel error
30 Device timeout

33 Read error

8.4.11 APPEL 7 ?RDLINE

Lecture d'une ligne d'un fichier disque ou périphérique ouvert en accés
lent par byte ou par ligne.

Paramétres d'entrée: A: numéro de canal
DE: pointeur en mémoire

paramétres de sortie: BC:longueur de la ligne en bytes

Liste des erreurs possibles pour cet appel:

5 Line too long
6 End of file
22 Channel error
30 Device timeout
33 Read error ‘
Remarque: . La longueur des lignes est 1imitée a 256 caracteres.
| es terminateurs reconnus pour la ligne sont: ZERO, CR, FF.

8.4.12

Numeérisé par micromusee.ch

8.4.12 APPEL 10 ?WRBLOC

Ecriture dans un fichier disque ou périphérique ouvert en accés rapide par
bloc.

Paramétres d'entrée: A: numéro de canal
' BC: nombre de bytes & écrire (REMARQUE
IMPORTANTE: seule la derniére tranche
écrite dans le fichier n'est pas forcément

multiple de 400g (voir 8.4.1.5)
DE: pointeur en mémoire

Paramétres de sortie: BC: nombre de bytes écrits

Liste des erreurs possibles pour cet appel:

/7 File end overflow

22 Channel error

30 Device timeout
33 Urite error

8.4.13 APPEL 26 ?WRBYTE

Ecriture par byte dans un fichier disque ou périphérique ouvert en
accés lent par byte ou par ligne.

Paramétres d'entrée: A: numéro de canal
BC: nombre de bytes a écrire

DE: pointeur en mémoire
Paramétres de sortie: BC: nombre de bytes écrits

Liste des erreurs possibles pour cet appel :

7 File end overflow
2?2 Channel error
30 Device timeout

32 WYWrite error

Numeérisé par micromusee.ch

8.4.14 APPEL 11 ?WRLINE

Ecriture d'une ligne dans un fichier disque ou périphérique ouvert en
acces lent par byte ou par ligne.

Paramétres d'entrée: A: numéro de canal
DE: pointeur en mémoire

Paramétre de sortie: BC: longueur de la ligne en bytes.

Liste des erreurs gossibles pour cet aggel:

5 Line too long

/7 File end overflow
22 Channel error
30 Device timeout
32 Write error

Remarque: La longueur de 1a ligne est limitée & 256 ciractéres.
Les terminateurs reconnus sont: ZERO, CR, FF.

8.4.15 APPEL 16 7LIST

Produit la liste des fichiers d'un répertoire

ONAME =

Paramétres d'entrée: DE: pointeur au nom
BC: pointeur en mémoire

Format d'un élément de la liste

OtxT=

l o
B ’ " . ; DSIZE=
' | A-date de création

—— fin du fichier
aébut du fichier
~-taille dernier bloc
———taijlle du fichier
‘o e attributs du fichier
—- - - ie eme ——e— -—Btat du fichier
extension du nom
.. - nom du fichier

DESIZE-=

OCOATES=

O N~ NN -

Fichier déefinition

en BCD date de création du fichier dans 1'ordre
JUMMAA

Fin du fichier: en binaire, numéro du dernier bloc + 1

Date de création:
vate d€ creativn

Début du fichier: en binaire, numéro du premier bloc

Ty | le dernier
‘ ier bloc: en binaire, nombre de bytes Ya]1des s .
Taille cernjer 0°%¢ bloc; 0/ signifiant bloc entiérement valide, soit 400g.

| | Numeérisé par micromusee.ch
Taille du fichier:en binaire, taille du fichier en blocs

Attributs du fichier: 1 byte selon le format: |- - -0CPRWI

Bit ouvert en]ecture-—-———~j ,
Bit ouvert en création

Bit attribute protect
Bit read protect
Bit write protect —m8@8 — MM ——

Etat du fichier: 1 caractére ASCII

| B: Tichier fermé
1 an: nombre d'ouvertures en lecture
C: ouvert en écriture

Extension du nom: 2 caractéres ASCII

M

Nom du fichier: 8 caractéres ASCII

Format de 1a 1iste:

BC .
Ay /PN
22 bytes ' 3

N iy r f ~plus grand trou

‘—————'—————————-———-—————————————._.________________”
nombre de fichiers dans le répertoire x 2Z bytes

place libre

Place libre: en binaire 1a somme en blocs de tous les espaces vides sur le
dans le répertoire.

Plus grand trou: taille en blocs du plus grand trou Zans le
répertoire.

Liste des erreurs possibles pour cet appel:

21 Unknown device

30 Device timeout
33 Read error

Remarque: la liste la plus Tongue possible (32 fichiers) nécessite
/07. bytes.

8.4.16 APPEL 1 ?DELETE

M

Suppression d'un fichier dans un répertoire

Paramétre d'entrée DE: pointeur au nom

b A iR
Liste des erreurs possibles pour cet appel :
Liste aes erreurs puss = e

1 UWrite protect file

10 File in use for writing
12 File does not exist

13 11legal filename

20 File in use for reading
21 Channel error

30 Device timeout

32 Write error

33 Read error

REMARQUE: pour pouvoir etre supprime,]e fichjer doit étre fermé
| et ne doit pas étre protége ad 1'ect1Fure.
La disquette ne doit pas etre protégee. a 4-15

Numeérisé par micromusee.ch
8.4.17 APPEL 2 ?RENAME

Changement du nom d'un fichier dans un répertoire

Paramétres d'entrée: DE: pointeur & 1'ancien nom
BC: pointeur au nouveau nom

Liste des erreurs possibles pour cet appel:

1 ‘Write protect file
10 File in use for writing
11 File already exists
12 File does not exist
13 Illegal filename
20 File in use for reading
21 Unknown device
30 Oevice timeout

31 Write protect tab set
32 Write error

33 Read error

Remarque: . La chaine ASCII, pointée par BC, qui contient le nouveau nom,
peut contenir un lien de répertoire ’

Celui-ci1 est ignorée pour autant que la syntaxe soit correcte.

REMARQUE: pour pouvoir @tre renommé, le fichier doit &tre fermé et ne doit pas etre
protégé a |'écriture.
La disquette ne doit pas etre protégée.

8.4.18 APPEL 14 7?COMPRE

Réunit tous les espaces vides d'un répertoire en un seul

Paramétres d'entrée: DE: pointeur au nom

A: nombre de blocs affectés comme buffers de conversion
A= : compression avec les buffers internes de SAMOS.

BC: pointeur du buffer (si1 A#0)

Liste des erreurs possibles pour cet appel:

21 Unknown device

23 File(s) in use

30 Device timeout

31 UYrite protect tab set
32 Vrite error '
33 Read error

Remarques: . Une erreur disque durant COMPRE est fatale

. L'utilisation des buffers de SAMOS pour la compression permet
d'éviter d'affecter 1a mémoire utilisateur; 1'opération est
cependant trés lente. Si 1'on spécifie un buffer, on a intérét
a ce qu'il soit le plus grand possible.

. Tous les fichiers du répertoire doivent &tre fermes

8.4-16

v
7\

Numeérisé par micromusee.ch
8.4.19 APPEL 13 ?LGO

Cnargement et exécution d'un fichier sur un disque
Paramétre d'entrée: DE: pointeur au nom

Parameétre de sortie: DE: pointeur du prochain caractére significatif (voir remarcues)

Liste des erreurs possibles pour cet appel

2 Read protect fils
10 File in use for writing
12 File does not exist
13 11legal filename
16 Cannot load file
20 File in use for reading
21 Unknown device
30 Device timeout’
33 Read error

34 No starting address

Remarques:

. Durant 1'exécution de cet appel, Te stack est déplacé en SPUTIL.
En cas d'erreur durant 1'exécution de 1'appel on distinque
deux comporiements:

1. Si aucun byte n'a encore été chargé ou s'il s'agit du message
"no starting address", on revient de 1'appel carry set avec
dans A le numéro de 1'erreur. Dans ce cas, le stack est remis
a sa place initiale.

2. S1 le chargement a commencé, on recoit le message FATAL LOAD ERROR
et 1'on saute en RESYS de SYSMON, le stack étant mis @ MAXMEM.
Pour redémarrer dans le CLI, il suffit alors de taper BOOT ou,

a la rigueur de faire RESET.

S'i1 n'y a pas d'erreur, le stack est mis.a MAXMEM, les interruptions
de la RTC, du timer de 1'utilisateur sont désactivées, et le
programme est exécuteé.

. Cet appel permet un chargement dans n'importe quelle partie de la
mémoire. I1 n'y a donc pas de protection contre une destruction

involontaire du software systeme.
. Prochain caractére significatif: si 1'appel s'est effectué correctement,

on ne revient pas de 1'appel et le programme est exécuté. DE pointe alors
le premier caractére significatif:
- s1 1'on a spécifié aprés le nom du programme une série de "slash",
Dt pointera le premier "slash” |
- sinon les séparateurs seront sautés et DE pointera le prenier caractére
ASCIT rencontré ou le terminateur de ligne.

Exemples: SORT{N/E ADDRESS.AD SYNTAX fDDRESS.AD
DE ' DE

3.4-17

Numeérisé par micromusee.ch

8.4.20 APPEL 15 7?FORMAT

Mise & zéro et test d'écriture d'un répertoire

Paramétres d'entreée DE: pointeur au nom

Liste des erreurs possibles pour cet appel:

M.

21 Unknown device

30 Device timeout

31 Hrite protect tab set
32 Write error

8.4.21 APPEL 5 ?RESET

Fermeture de tous les fichiers ouverts d'un réepertoire

Pas de paramétres a sgécifier

Remarques:

. Cet appel n'a pas de contrdle d'erreur.
S1 une erreur survient durant la fermeture d'un canal, celui-ci est

purement et simplement supprimé; cet appel ne doit en principe etre
utilisé que pour une fermeture d'urgence.

. Les paramétres DEBUT et START sont mis & zéro.

. Les fichiers ayant 1'extension .MC sont protégés contre cet appel
et restent normalement ouverts.

8.4.22 APPEL 12 ?CLR

Suppression des flags d'ouverture de tous les fichiers ouverts dans un
répertoire

Paramétre d'entrée: DE: pointeur au nom

Liste des erreurs possibles pour cet appel:

21 Unknown device

30 Device timeout

31 Write protect tab set
32 VYrite error -

33 Read error

Remarques: . Cet appel permet d'éliminer les flags d'ouverture dans le
directoire d'un répertoire lorsque 1'on a perdu les FIT

(file information table)
Ceci est trés utile aprés, par exemple, une panne de courant.

. Une erreur disque a 1'écriture est fatale pour cet appel,
puisqu'elle concerne 1'écriture du directoire.

8.4-18

Numeérisé par micromusee.ch

8.4.23 APPEL 20 ?CHATR

Modification des attributs d'un fichier dans un répertoire

Paramétres d'entrée: DE: pointeur au nom
A: attributs W et R

A: Ix x x x x x R W!

indifférent t L bit de protection & 1'écriture
bit de protection @ la lecture

etat 1: actif état O: inactif

Liste des erreurs possibles pour cet apnel:

4 Permanent file

10 File in use for writing
12 File does not exist
13 Illegal filename

20 File in use for reading
21 Unknown device

30 Device timeout

31 Write protect tab set
32 Write error

33 Read error

Remarques: . Une erreur disque & 1'écriture est fatale pour cet appel puisqu'elle
concerne 1'écriture du directoire

. Le Tichier doit etre fermé et ne doit pas avoir les attributs protégés.
La disquette ne doit pas étre protégée.

8.4.24 APPEL 21 ?CHATPT

Modification de la protection des attributs d'un fichier dans un répertoire

Paramétres d'entrée: DE: pointeur au nom
A: attribut de protection P

A: ‘X X X X X x|
inditTférent M~ -
y, =@ attribut non protégé

. #@ attribut protéegé

Liste des erreurs possibles pour cet appel

10 File in use for writing
12 File does not exist

13 Illegal filename

20 File in use for reading
21 Unknown device

30 DEvice timeout

31 Write protect tab set
32 VYrite error

33 Read error

Remarques: une erreur disque @ 1'écriture est fatale pour cet appel puisqu'elle
concerne 1'écriture du directoire.

. Le fichier doit etre fermé.
La disquette ne doit pas etre protégée.

Numeérisé par micromusee.ch

e

8.4.25 pppri 22 7ARGS

Rgnsgignements généraux sur un répertoire et éventuellement en plus sur un
fichier particulier de ce répertoire.
Paramétres d'entrée: DE: pointeur au nom

BC: pointeur en mémoire

Paramétres de sortie:

BC -2 bytes: longueur du plus grand trou (en blocs)
1 byte: attributs du fichier
| etat 1: actif
YRAQLPRE état @: inactif

V: validation du byte. Si V=1, le byte est valide, donc le fichier

spécifi1é dans la chaine ASCII pointée par DE existedans ce répertoire.
Ce byte d'attribut du fichier ainsi que les suivants, qui se
réféereront au fichier, sont valides.

0: bit d'ouverture @ la lecture.
Bit virtuel, non inscrit effectivement dans le directoire, actif
s1 le compteur OPEN du directoire est différent de 9.

C: bit d'ouverture @ |1'écriture

0 LS
P: bit de protection des attributs
OATTR= £
R: bit de protection a la lecture ONBLOC= 3 |,
attributs :
W: bit de protection @ 1 'écriture }’ ONBYTE= = -
OADEB= k i
2 bytes: taille du fichier en blocs %
1 byte: nombre de bytes valides dans le dernier bloc O0ASTART=E. g
2 bytes: adresse de début -~

2 bytes: adresse de start ODATE= 10.
3 bytes: date de création |

liste des erreurs possibles pour cet appel:

- Fichier définiti
21 Unknown device déTinition

30 Device timeout
33 Read error

Demerque: La taille minimum du buffer, pointé par BC, ou 1'appel délivrera
ses informations, doit etre de 1310 bytes.

8.4.26 EPPEL 17 ?RTN
tffectue un .Y 72LGO de CLI.SY en DX@.

Pas de paramétired 'entrée.

Remarque: On ne revient jamais de cet appel.
Si 1'appel s'est effectué correctement, on est dans le programme CLI.SY

sinon, on est dans le SYSTEME avec un des messages d'erreur de 1'appel
?LGO.

8.4-20

8.4

.27 APPEL 27 ?UPDATE

Lec

Numeérisé par micromusee.ch

ture ou ecriture de blocs physiques d'un fichier dans un répertoire avec accés

aléatoire & 1'intérieur du fichier.

Par

amétres d'entrée: A: numéro de canal
. DE: pointeur en mémoire _
BC: nombre de bytes & lire ou écrire
HL: numéro du bloc (de @ a n)
Carry=1: écriture
Carry=@: lecture

Paramétres de sortie: BC: nombre de bytes lus ou écrits

. Sans message d'erreur (retour carry clear) on rend dans BC le nombre de bytes
effectivement lus ou écrits (sauf si le nombre de bytes spécifié en entrée ne

respectait pas la régle du multiple de 400g; on rend le multiple supérieur
de 400g).

. En lecture avec le message "end of file" BC donne le nombre de bytes valides

(pas forcément multiple de 400g).

. En eécriture avec le message "file end overflow" BC donne un multiple de 400g

correspondant aux blocs effectivement écrits. ATTENTION: ne pas écrire dans
la partie non significative du dernier bloc; cette condition n'est pas détectée
par SAMOS car le message "file end overflow" est géré au niveau des blocs.

Liste des erreurs possibles pour cet appel:

6 End of file

/ File end overflow

17 QOut of file

22 Channel error
30 -Device timeout
32 Write error
33 Read error

Remarques: . Pour accéder en UPDATE sur un fichier, il faut qu'il ait été ouvert

en accés par blocs en lecture (OPEBLK).

On accéde aleéatoirement @ chaque bloc physique en spécifiant dans HL
1'offset, en nombre de blocs, par rapport @ 1'origine en cours et dans
BC le nombre de bytes (multiple de 400g) a lire ou a@ écrire depuis la.
Juste aprés 1'ouverture, et tant que 1'on n'a pas lu ce fichier avec
1'appel 7?RDBLOC, 1'origine en cours coincide avec le début du fichier.

Aprés une lecture de ce fichier par 1'appel ?RDBLOC 1'origine
en cours est déplacée sur le bloc suivant le dernier bloc lu
par 1'accés 7?RDBLOC. On ne pourra donc, avec 1'appel ?UPDATE,
plus accéder aux blocs Tus @ 1'aide de 7?RDBLOC. -

. 57 on utilise successivement les appels ?RDBLOC et ?UPDATE,
ne pas oublier que chaque appel 7?RDBLOC change 1'offset d'un
oloc donné pour 7ZUPDATE.

Exemple:

?lgc. . p]gc.dgnpé.

_

: fichier
origine
en cours

01234567 39101112 Dans ce cas: offset pour ?UPDATE=12

-—-——-—.———-—-————_—-—_—.-—_—.—__—___——_-.____

8.4-21
G D

Numeérisé par micromusee.ch
- Lecture de 6 blocs aprés ?RDBLOC donne:

[~ QlOC bloc donné

fichier

P
origine en{cours

12345 Maintenant 1'offset pour le méme bloc vaut 5

plus accessible
par ?UPDATE

8.4.28 APPEL 30 ?ERROR
Visualisation d'un numéro d'erreur
Paramétre d'entreée: A: No de 1'erreur

Fonctionnement: Cherche en DX@: s'il existe le fichier ER.SY

51 c'est le cas, cherche dans ce fichier s'il s'y trouve ce numéro
d'erreur. Si c'est encore le cas, affiche a 1'écran la phrase
correspondante. Dans les cas contraires affiche @ 1'écran le
message ERROR suivi du numéro de 1'erreur que 1'on voulait
visualiser.

REMARQUE: Tle fichier ER.SY - fait partie du systéme SAMOS.
Lors de son emploi par 1'appel ?ERROR celui-ci est
chargé dans un buffer interne. Ce fichier ne doit donc
en aucun cas etre modifié (exemple ajout de messages
personnels.), en effet sa taille ne doit pas dépasser

trois blocs.

8.4.29 APPEL 3] ?BDERO

M

| ecture de la somme des erreurs éventuelles durant un accés disque.

Daraméire de sortie: A: somme des erreurs

REMARQUE: SAMOS admet 10 tentatives avant de signaler.uqe erreur
de lecture ou d'écriture. Cet appel comptabilise la

somme des tentatives supplémentaires.

Exemple: un accds disque 1it les blocs 101 a 103 compris.
S'i1 a fallu pour Tire le bloc:

101: 3 tentatives => 2 erreurs
102: 8 tentatives —> [/ erreurs
103: 4 tentatives => 3 erreurs

Total et valeur de A:12 erreurs

8.4.30 APPEL 33 ?GNBLOC

M

Lecture du nombre de blocs du répertoire courant.

Paramétre de sortie: BC: nombre de blocs du répertoire courant.
8.4-22

L\ '

Numeérisé par micromusee.ch

8.4.31 Appel 36 ?LOAD

Cet appel permet le chargement direct d'un fichier & un emplacement donné et
avec une longueur maximum donnée. Cet appel travaille avec le stack utilisa-

teur. La recherche aura lieu dans le répertoire courant; si la recherche échoue,
elle se poursuivra dans les répertoires DX0: et DX1:.

Lorsqu'il charce un fichier binaire (adresse de chargement donnée au CLOSE
différente de zéro). il vérifie que 1'adresse de chargement spécifiée est
Dien la méme que celle du fichier. Si ce n'est pas le cas, i1 n'y a pas de
chargement et un retour d'appel carry set avec 1'erreur 16 (fichier non
executable). BC vaut alors ®. S'il1 s'agit d'un autre fichier (adresse de char-
gement e€gale d z&ro), ce contrdle n'est pas effectué et le fichier se charge de

toutgs facons. Pour 1a longueur du chargement, 1'appel ne dépassera jamais le
multiple supérieur de 400 de la valeur spécifiée dans BC.

exemple: BC = 1 4C0, BC = 400 400, BC = 40] 1000.

Si le fichier est trop grand, 1'appel revient carry set avec 1'erreur 16 et BC donne
la longueur effectivement chargée. Si le fichier est plus petit le retour est
carry clear et BC donne Ta longueur exacte du fichier chargé.

Paramétres d'entrée: DE = pointeur au nom
HL = adresse de chargement
BC = longueur maximale admise (multiple de 400 ...)

Paramétres de sortie: BC = longueur valide effective
CS en cas d'erreur avec A = No de 1'erreur

Modifies: AF

BC
8.4.32 Appel 34 ?DIR
Cet appel permet de se mettre de maniére fixe dans un répertoire.
Paramétre d'entrée: DE = pointeur au nom (1ien du répertoire)
Paramétre de sortie: ----

Modifiés: AF

8.4.33 fppel 37 7GDIR

Cet appel rend dans le buffer pointé par DE le nom du répertoire courant
sans extension et terminé par un zéro. Le buffer doit avoir une longueur
de 9 bytes.

Paramétres d'entrée: DE = pointeur au buffer
paramétres de sortie: nom du répertoire courant dans le buffer

Modifiés: AF

8.4.23

Numeérisé par micromusee.ch

8.4.36 APPEL 42 7?SHEAD
Cet §ppe12 uniquement valable dans la version floppy doubles tétes, permet
de sélectionner le mode de fonctionnement des drives DX0: et DX1:.

En cas d'utilisation de cet appel dans une configuration sans floppy double téte,
Oon a un retour carry set avec 1'erreurl10 (commande illégale).

Paramétres d'entrée: A = xabxxxx

a = drive DX D = drive DXC bit set: 2 tétes
Paramétres de sortie: ---
Modifiés: AF

8.4.35 Appel 43 2GHEAD

Cet appel, uniquement valable dans 1a version flopoy doubles t&tes, donne
dans A le mode de fonctionnement courant des flopnies.

E9 cas d'utilisation de cet appel dans une configuration sans floppy double
tetes, on a un reteut carry set avec 1'erreur 110 (commande illégale).

raramétres d'entrée: ---

Paramétres de sortie: A = xabxxxx
a = drive DX] b = drive DXO0O bit set: 2 tétes
Modifiés: AF

8.4.36 Appel 40 7MODAY
Cet appel permet de modifier la date de créatian d'un fichier.

Paramétres d'entrée: DE = pointeur au nom
ABC = nouvelle date

Paramétres de sortie: ---

Modifiés: AF

§.4.37 Appel 41 ?GSAMOS

Cet appel rend dans BC la révision et la version ASCII, ainsi que les
paramétres de la configuration utilisée dans A.

Paremetres d'entrée: -

Paramétres de sortie: B = révision C = version
A = xxxabcde Dbit set = oui
a = winchester en DXZ2:
b = winchester en DXI:
¢ = winchester en DXO:
d = floppy double tétes
e = floppy simple tete
Modifiés: AF, BC 8.4.24

Numeériseé par micromusee.ch

8.5 DESCRIPTION DES INDIRECTIONS SUR LES RCUTINES DE BASE

8.5.1 DESCRIPTION DES PARAMETRES

Les routines de base disque permettent de lire ou d'écrire n'importe 60
sur le disque. I1 faut cependant spécifier les adresses disque désirées.
Ces adresses disque se donnent en numéro de bloc dans un registre 16 bits.

On utilisera, pour faire fonctionner ces routines, également les paramétres
pointeur en mémoire et pointeur au nom. Ces paramétres sont identiques a ceux
utilisés pour tes appels SAMOS (se référer donc & leur description).

REMARQUE IMPORTANTE: des problémes hardware font que le bon fonctionnement
des disgues n'est garanti que si 1'on n'est pas en mode graphique (dans ce
mode, |'augmentation de durée de 1'interruption DMA display fait que Tle
processeur n'arrive plus & suivre le controleur de disques). Si les appels
SAMOS se préoccupent de changer le mode du display et de le restituer en
sortie, les routines de base ne le font pas. C'est donc & 1'utilisateur
de ces routines de se préoccuper de ce probléme.

8.5.2 RODWIB (Read On Disk Write In Buffer)

Adresse de 1'indirection: 10003

Cette routine, comme son nom 1'indique, permet de Tire une portion du disque
et d'écrire son contenu en mémoire. I1 faut donc préciser les limites de la
portion @ lire sur le disque. Ceci est donné par un numéro de bloc de départ

et un No de bloc de fin qui est 1'adresse du ler secteur n'appartenant plus
a 1a portion @ Tire (en d’autres mots, 1'adresse du dernier secteur + 1).

mémoire disque [
1 piste : | secteur |

JT 5 R " r‘;:.-._"'o;;‘_-f‘[!‘,'“ I 't‘ 3 ::“‘.'.-:-‘,’.'. Na)
PORTION A. LIRE: - ~&iutin e L
adresse de début - adresse de fin

Cette information qui est Tue sur le disque doi1t naturellement etre écrite dans
une zone mémoire spécifiée. C'est le paramétre pointeur en mémoire qui fournit
cette information. Il donne 1'origine du buffer qui va recevoir 1'information.
Touk comme un appel SAMOS, une erreur peut intervenir. La routine se comporte

de maniére similaire aux appels, on reviendra Carry set et avec le numéro d'erreur

dans le registre A.

Cette routine ne se suffit pas a elle-méme. En effet, 11 faut pouvoir spécifier
oréalablement 1'adresse du répertoire sur lequel nous allons faire ce travail.

Nous pourrons le faire grace a 1'indirection sur la routine TSTDRI décrite plus
loin. D'autre part, cette routine ne désélectionne pas le drive. Il faudra le
faire avec 1'indirection sur la routine STOP , également décrite ci-apres.

C'est uniquement dans Te cas d'un retour avec erreur que le drive est automatique-

ment désélectionne.
8.5-1

Numeérisé par micromusee.ch

CALL RODWIB
RODWIB = 10003

in: BC = numéro du bloc de départ
HL = numéro du bloc de fin
DE = pointeur en mémoire

out: Carry set si erreur, avec dans A le No de 1'erreur
mod: A, BC, DE, HL, F

8.5.3 RIBWOD (Read In Buffer, Write On Disk)
Adresse de 1'indirection: 10006

Cette routine, comme son nom 1'indique, permet d'écrire sur une portion de

disque préalablement Tue en mémoire. Elle fonctionne exactement a 1'inverse de
RODWIB qui vient d'etre décrit. Se reporter donc au paragraphe précédent pour
la compréhension du fonctionnement de RIBWOD.

CALL RIBWOD
RIBWOD = 10006

in: BC = numéro du bloc de départ
HL = puméro du bloc de fin -
DE = pointeur en mémoire

out: Carry set si erreur avec dans A le No de 1'erreur
mod: A, BC, DE, HL, F.

8.5.4 TSTDRI (Test of drive and repertory.addres§l_

Adresse de 1'indirection: 10011

Cette routine reconnait dans 1a chaine ASCII du pointeur au nom le lien
du répertoire spécifié. Les régles de syntaxe décrites pour le pointeur
au nom des appels SAMOS sont valables. On utilise cette routine pour spé
cifier le répertoire que 1'on désire accéder. I1 n'est pas nécessaire
d'appeler cette routine avant chaque accés, mais avant le premier et par
la suite & chaque fois cue 1'on change de répertoire.

CALL TSTDRI
TSTDRI = 10011

in: DE = pointeur au nom
mod: A, HL, DE, F

3.5.5 SIOF (disable drive selection)
Adresse de 1'indirection: 10000

Cette routine permet de désélectionner un drive qui 1'a été par une des routines

RODWIB ou RIBWOD. Elle n'est nécessaire qu'en fin de travail. En effet un certain
travail peut étre composé d'une succession d'accés disque. Il est alors agréable

de ne pas désélectionner le drive entre chaque accés. La routine STOP n'est

méme pas nécessaire si 1'on change de repertoire, En effet c'est la routine

TSTDRT qui assurera la transition d'un répertoire a 1'autre. I1 faut remarquer que des

que 1'on a exécuté un accés disque (RODWIB ou RIBWOD) I "interruption 50 Hz est

_inhibée, Te clavier n'est donc plus accessible.

8.5-2

"3

Numeérisé par micromusee.ch

On peut naturellement réactiver 1'interruption 50 Hz entre deux accés disque a
1'aide de 1'appel SYSTEME 7?ENIS@ . Il n'est pas nécessaire de le désactiver a

nouveau avant le prochain accés disque.
CALL STOP
STOP = 10000

aucun paramétre, n'affecte rien.

8.5.6 INIFLO (Init SMAKY6 in Floppy mode))
Adresse de 1'indirection: 10017

- — - ———

Cette routine effectue les travaux suivants:

- Affiche sur 1'écran SAMOS rév./ version
- Initialise les restarts floppy (restart 10 et 20)

- Initialisation des FIT (file information table)

- Tracking des disques (initialisation en piste @) avec reconnaissance des
drives ou le tracking s'est correctement effectué
- Affichage des adresses de drive non reconnues.

Attention: cette routine ne modifie pas MAXMEM, et, évidemment, n'initialise
pas le stack.

CALL INIFLO
INIFLO = 1001/

pas de paramétre
mod: A, HL, BC, F

8.5-3

Numeérisé par micromusee.ch

8.5.7 INDIRECTION SUR RTN

M

Adresse de 1'indirection: 10025

-——————_——-———_*

Effectue un ?LGO0 de CLI.SY en DX@: (méme effet que |'appel 7?RTN)

8.5.8 INDIRECTION SUR BOOT

M

Adresse de la routine: 10022

_—W

Exécution du programme de bootstrap

8.5.9 NMIRTN
Adresse: 10030

Cette adresse est prévue pour 1'initialisation de la touche NMI.
Un retour par cette adresse ferme tout d'abord le fichier MACRO, s'il en
existe un d'ouvert, puis effectue un RTN.

8.5.10 ROUTINE ADBLK
Adresse de la routine: 10014

Cette routine effectue une addition de blocs entre HL et DE. le résultat
étant dans HL. S1 le résultat de 1'addition dépasse la capacité maximum du
répertoire, le retour se fait carry set avec A=erreur 26 (disk full)

et HL= le numéro du dernier bloc admissible (soit 1'adresse du premier
secteur hors capacite).

Lette adresse est relative, le premier bloc d'un répertoire a toujours le
numéro zeéro. Pour connaitre 1'adresse absolue, il faut additionner 1'adresse

absolue du premier bloc du répertoire.

CALL ADBLK
ADBLK = 10014
in: HL et DE: éléments de 1'addition

out: A = erreur 26 et carry set s1 dépassement
HL = résultat addition ou valeur maximum admissible si dépassement

mod: A, DE, HL, F

Numeérisé par micromusee.ch

8.6. EXEMPLES D'UTILISATION DES APPELS SAMOS

B-6-1 INTRODUCTION

Nous venons de passer en revue tous les appels floppy SAMOS. Vous connaissez
donc les definitions de ces outils, mais cela ne veut pas dire que vous sachiez

vous en servir. Voici quelques exemples fondamentaux qui devraient vous

faciliter la tache dans vos programmes utilisant des fichiers disque ou
peripherique,

8-6-2 UN PREMIER EXEMPLE SIMPLE ET COMMENTE

Dane cet exemple nous allons tout simplement lire un fichier source sur disque

et le transierer sur l'écran grace au fichier périphérique ecran $DIS. Nous
ferons ceci 10 bytes a 10 bytes.

Supposons que notre fichier disque s'appelle TOTO.SR, et qu'il se trouve sur la
disquette inseree dans le drive DX1l:.

Pour pouvoir 1lire ce fichier 1l faut tout d'abord l1l'ouvir. Nous avons besoin
pour ce faire des informations suivantes: le nom du fichier et 1l'adresse du

adrive ol se trouve la disquette contenant notre fichier. Il faut donc definir
une chaine ascil contenant ces deux informations.

INFILE: .ASCIZ /DX:TOTO.SR/

L'etiquette INFILE est l'adresse du premier caractére de cette chaine ASCII.

Nous pouvons maintenant ouvir notre fichier. Comme nous voulons lire notre
fichier par 10 bytes, nous utilisons l'acceés par bytes et nous écrivons:

LOAD DE,#INFILE ; DE = pointeur au nom
W ?0PEN ;ouverture en acceés par bytes

Nous avons & ce stade un probléme. Nous savons gue nous pouvons revenir d'un
appel SAEMOS zvec une erreur, il est donc néecessalre de prevolr cette
eventualite, Comme en cas d'erreur nous avons CARRY SET en sortie d'appel nous
€Crivons:;

JUMP ,CS ERROR

ERPOP ¢€+ant une portion de notre programme ou nous tralterons les erreurs
d'enteée-sortie dicsque,

notre appel SaMOS d'ouverture de fichier s'est effectue correctement, nous
s cue SEMOS nous rend un numéro de CANAL qul sera utilise pour la sulte des
éions. Nous allons donc sauver ce numéro de canal par exemple dans une
ition mémoire. Nous écrivons doncC:

LOED INCH,A

2 ce stade, nous sommes capables de commencer a LIRE notre fichier TOTO.SR.
cependant n'oublions pas que nous voulons ECRIRE les bytes lus sur l'écran. Il
faut donc egalement ouvrir EN ECRITURE le fichier peériphérique IDIS.

Numeérisé par micromusee.ch

Pour ouvrair un fichier péripheérique en écriture nous n'avons besoin que du nom,
Nous definissons donc une autre chaine ascii et nous ecrivons:

OUTFIL: .ASCIZ /SDIS/

Nous pouvons maintenant ouvir notre fichier et nous ecrivons:

LOAD DE, #OUTFIL
W ?CREATE

Comme pour TOTO.SR nous prévoyons une eéventuelle erreur:

JUMP ,CS ERROR

Et nous sauvons également le numéro de canal:

LOAD OUTCH, A

Cette folis, nous somme pret a effectuer nos transferts de bytes du fichier
disque sur le péripherique S$DIS.

Nous lisons tout d'abord 10 bytes de TOTO.SR. Pour ce faire, nous avons besoin

d'un BUFFER de 10 bytes ou l'appel de lecture délivrera son information.
Définissons-le:

LONGDATA=10.
BUFFER: .BLKB LONGDATA

Lisons maintenant 10 bytes de notre fichier TOTO.SR. Pour ce faire nous
initialisons le POINTEUR EN MEMOIRE DE au debut de notre buffer. Dans A nous
mettons le numéro de CANAL et dans BC le NOMBRE DE BYTES a lire. Ceci donne:

LOAD DE , £BUFFER

LOAD BC, #LONGDATA
DIFIl:

LOAD A, INCH

W ?RDBYTE

La, un nouveau probléme ce pose en cas d’'erreur. Nous ne pouvons pas simplement
sauter &8 ERROR, car nous devons FILTRER 1'ERREUR END OF FILE qul nous apprend que
nous avons lu tous les bytes de TOTO.SR. EREOF étant le numéro de cette erreur,

nous pouvons par exemple traiter le probléme ainsi:

JUMP,CC DIPIZ2 ;pas d'erreur = pas de probléeme
COMP 2 ,#EREOF ;test si END OF FILE
JUMP ,NE ERROR ;1 non, va a ERROR

Comme nous lisons par tranche de 10 bytes, il est fort possible que nous ayons
tout de meme lu quelgués bytes. Nous ne pouvons donc pas simplement terminer ici
le programme. Il faut VERIFIER QUE LE NOMBRE DE BYTES LUS RENDU DANS BC SOIT NUL.

Nous écrivons alors:

LOAD A,B ;teste si le registre
OR A,C ;BC est nul
JUH§,EQ FIN :si c'est le cas, c'est fini

Dans le cas contraire, ou si nous n'avons pas eu d'erreur, il faut maintenant
transferer les 10 bytes lus sur l'écran. Comme LE POINTEUR EN MEMOIRE DE N'EST
PAS MODIFIE nous pointons le debut de notre information lue. Comme d'autre part

BC = NOMBRE DE BYTES EFFECTIVEMENT LUS, il suffit d'écrire:
1

DIFIZ2:
LOAD A, OQUTCH :A = numéro de canal de 3XDIS

W ?WRBYTE .

JUMP,CS ERROR
8.6-2

Numérisé par micyomusee.ch

Il suffit maintenant de fermer notre boucle de tranfert, pour exéecuter le
programme jusqu'au transfert integral de TOTO.SR.

JUMP DIFIl

Pour que notre programme soit complet nous devons encore voir ce que nous devons
faire une fois le transfert termine. Il faut tout naturellement FERMER LES
FICHIERS UTILISES. Pour cela nous pouvons utiliser soit deux fois l'appel CLOSE

pour chaque canal ou alors l'appel RESET qui ferme tous les fichiers ouvert,
Utilisons donc simplement RESET:

FIN:
W ?RESET
W ?RTN

Nous avons finalement utilisé l'appel RTN qui termine le programme et revient au
%

Il ne reste plus qu'a traiter les cas des erreurs. On utilise généralement
l'appel ERROR qui permet la visualisation de l'erreur. On peut par exemple
traiter le cas de la maniére suivante:

"ERROR:
W ?RETURN ;va a la ligne
W ?ERROR ;visualise l'erreur
W ?RESET ; ferme tous les fichiers
W ?RTN ;et retourne au CLI

Si l1l'on ajoute au debut une initialisation de l'écran voicli finalement notre
petit programme DISFILE (display file).

TITLE DISFILE PROGRAM
. PROC Z80

% . REF FLO
LONGDATA=10.

. LOC 53000

; initialisation du programme:

DISFIL:
LOAD C,#LINES ; lnitialise une feneétre
W 14013 ; sur tout l'ecran ,
LOAD DE, #INFILE : DE = pt au nom fichier entrée
: ?0PEN ; ouverture en accés par bytes
JUMP,CS ERROR ; avorte en cas d'erreur
LOAD INCH,A ; sauve le canal d'entree
LOAD DE, #OUTFIL : DE = pt au nom fichier sortie
W ?CREATE ; creation en acces par bytes
JUMP,CS ERROR ; avorte en cas d'erreur
LOAD OUTCH, A ; sauve le canal de sortie
LOAD DE , #BUFFER ; DE = pointer le buffer

: Boucle du transfert

DIFT1: LOAD BC,#LONGDATA # BC = nombre de bytes a opérer
LOAD A, INCH ;. A = canal d'entree
W 7RDBYTE ; lecture des bytes
JUMP,CC DIFIZ2 ; saute sgsi pas d'erreur
COMP A, #EREQOF ; test 81 END OF FILE
JUMP , NE ERPROR : S1 non, va a ERROR 4
LOAD A,B : teste si le registre
OR A,C ; BC es3t nul
JUMP ,EQ FIN : 31 c'est le cas, c'est fini

Numeérisé par micromusee.ch
DIFIZ2:

LOAD A, OUTCH
W ?WRBYTE
JUMP ,CS ERROR
JUMP DIFIl

A = canal de sortie
ecriture des bytes
avorte en cas d'erreur
continue le transfert

-e a T e e

; Fin du programme

FIN:

W ?RESET ferme tous les fichiers
W ?7RTN ; retourne au CLI

e

; Fin du programme en cas d'erreur

ERROR:
W ?RETURN ; va a la ligne
W ?ERROR ; visualise l'erreur
W ?RESET ; fexrme tous les fichiers
W ?RTN ; et retourne au CLI

; Nom des fichiers, paramétres en RAM et buffer.

INFILE: .ASCIZ /DX1:TOTO.SR/ ; nom fichier d'entree
OUTFIL: .ASCIZ /SDIS/ ; nom fichier sortie

INCH: . BLKB 1 ; memolre canal d'entree
OUTCH: .BLKB 1 ; mémolre canal de sortie
BUFFER: .BLKB LONGDATA ; buffer de transfert

. END DISFIL

8—-6—3 APPRENONS PLUS EN AMELIORANT CE PROGRAMME
3

Le petit programme que nous venons de decrire a l'avantage d'étre trés simple

pour bien faire comprendre le fonctionnement fondamental des principaux appels
SAMOS mais n'est évidemment pas trés évolue. Voicl ce que nous allons améliorer:

Specification dans la ligne de commande d'appel du programme des noms du fichier
en entree et du fichier en sortie.

Comme nous allons pouvoir spécifier le fichier en sortie, nous transférerons
egalement les paramétres du fichier: ADRESSE DE DEBUT, ADRESSE DE START pour le
cas d'un transfert sur un NOUVEAU FICHIER DISQUE. Nous utiliserons 1'ACCES PAR

BLOCS et un grand buffer pour étre plus rapide.

On voit que ces modifications vont faire de notre programme un PROGRAMME DE
TRANFERT DE FICHIER GENERAL, qui peut notemment faire exactement ce que faisait
DISFILE mais aussi tous autres types de transferts. Nous l'appellerons donc XFER
et pour transférer par exemple le fichier TOTO.TX dans le fichier TITI.SR, 1l

faudra taper XFER TOTO.TX TITI.SR.

.TITLE XFER PROGRAM

. PROC 280

v Bl FLO

. LOC 53000

ERILC = 110 : No message d'erreur

» commande 1llégale

8.6-4

XFER:

XFERO:

-
'

XFPERZ2:

Numeérisé par micromusee.ch

; initialisation du programme :

; ouverture du fichier en entreée
; apres le LGO de notre programme XFER
; DE pointe l'argument suivant de la ligne de commande

LOAD A, (DE)

OR A,A
JUMP,EQ ILLCOM
W ?0PEBLK

JUMP ,CS ERROR
LOAD INCH,A

e

1it un car de la ligne de commande
test si1 fin de la ligne

saute a commande illegale si oul
ouverture en acceés par blocs
avorte en cas d'erreur

sauve le canal d'entree

; lecture des parametres du fichier d'entree

LOAD BC, #ARGBUF

W 7ARGS

; poilnteur de la ligne de

B
r

.
’

; Sur l'argument suivant

LOAD A, (DE)
INC DE

OR A,A
JUMP,EQ ILLCOM
COMP A, #SPACE
JUMP,EQ XFER1
COMP A, #TAB
JUMP, NE XFERO

: ouverture du fichier en

LOAD BC, #0

W ?7CREBLK
JUMP ,CS ERROR

LOAD OUTCH, A
LOAD SVOUT ,DE

~ .

e e e

pointe buffer des paramétres
lit les paramétres

commande

lit un car de la ligne de commande
incremente le pt de la ligne

test si fin ligne de commande
saute a commande illégale si ouil
test si1 séparateur

gaute si oul

test si seéparateur

Sl non =»> caract. suivant

sortie

réservation place par défaut
creation en accés par blocs
avorte en cas d'erreur

sauve le canal de sortie
sauve pt nom fichier sortie

; calcul de la taille du buffer
; Soit le nombre de bytes maximum gque
; 1l'on pourra traiter par tranche du transfert

.« W ?MEM

LOAD SP,HL

DEC H

LOAD DE , #BUFF'ER
OR A,A

SUBC HL,DE

ILOAD B,H

LOAD C,#0

Boucle du transfert

LOAD A,INCH

W ?7RDBLK

JUMP,CC XFERS3
COMP A, #EREOF

JUMP , NE ERROR
LOAD A,B
OR A,C
JUMP,EQ FIN

e

-e

~ - e e

-

-

l1it la fin de mémoire

met le stack a cet endroit
de la place pour le stack
DE = début du buffer
clear le carry

calcul la taille

BC = nombre maximum de
bytes MULTIPLE DE 400

A = canal d'entree

lecture des blocs
gaute 81 pas d'erreur
test 81 END OF FILE

gi non, va a ERROR
teste 81 le registre

BC est nul
gi c'est le cas, c'est fini

8.6-5

Numérisé par micromusee.ch

XFER3?

LOAD A, OUTCH A = canal de sortie
W ?WRBLK écriture des blocs
JUMP,CS ERROR avorte en cas d'erreur

JUMP XFER2 ; continue le transfert

- e -,

; Fin du programme

fermeture du fichier de sortie avec
.les paramétres prealablement lus et sauveés
;.du fichier en entree

e -

FIN:

LOAD A,OUTCH
LOAD BC, DEBUT

A = canal de sgortie
BC = adr de debut

e e e -

L.OAD DE , START DE = adr de start

W ?CLOSE fermeture fichier sortie

LOAD A,INCH ‘
W ?2CLOSE ; fermeture fichier entree
W ?RTN ; retourne au CLI

; Fin du programme en cas d'erreur

ILIL.COM:
LOAD A,#ERILC ; no erreur commande illeégale
ERROR:
W 7ERROR ; visualise l'erreur
W ?RESET ; ferme tous les fichiers
LOAD DE , SVOUT ; pointeur nom fichier sortie
W ?DELETE ; supprime si deéja creée
i ?RTN ; et retourne au CLI

; parameétres en RAM et buffers.

INCH: . BLKB 1 : mémolire canal d'entrée

OUTCH: .BLKB 1 ; mémolre canal de sortie
SVOUT: .BLKW 1 ; mémolire pt nom fichier sortie
ARGBUF: .BLKB 6 ; buffer pour appel ARGS

DEBUT: . BLKW 1 ; paramétre adr deébut

START: . BLKW 1 ; parametre adr de start
BUFFER ; debut du buffer de transfert

. END XFER

Avec ce nouveau programme nous voyons tout d'abord que le passage des arguments
de l'ordre par la ligne de commande est relativement facile. Nous voyons
egalement une utilisation de 1’ appel ARGS qui rend possible le transfert des
parametres du fichier d'entrée. On voit que dans ce cas, on ne peut pas utiliser
l'appel RESET pour fermer le fichier de sortie puisqu'il faut specifier les
parametres de debut et de start. Il faut remarquer que pour la creation du
fichier de sortie, nous avons pris soin de spéecifier le paramétre de reéservation
de la place dans le registre BC, qui pouvait etre omis dans DISFILE puilsque le
fichier de sortie etait un péripherique. Finalement on voit une utilisation de
1'appel DELETE, qui nous permet de supprimer le fichler de sortie en cas
d'erreur et 8'il a deja ete cree. Remarquons que pour faire ceci, 1l a fallu
sauver le pointeur au nom du fichier et prendre garde d'exeécuter l'appel DELETE

apres la fermeture du fichier.

Numeérisé par micromusee.ch
8—-6~4 QUELQUES ROUTINES EXTRAITES DE PROGRAMMES

Vous trouverez ci-aprés des routines d'entreée-sortie disque extraite de

programmes qul montrent comment on peut utiliser avantageusement l'acces par
bloc tout en s'affranchissant des contraintes dues a ce type d'acces.

8-6—4—1 ROUTINES DE LECTURE ET D'ECRITURE BYTE A BYTE

Voicli tout d'abord les parameétres utilises par ces routines:

INCH: . BLKB 1 ; input channel

OUTCH . BLKB 1 ; output channel

CNTIN: . BLKW 1 ; input bytes counter

CNTOUT: . BLXW 1 ; output bytes counter

PTIN: . BLKW 1 ; input buffer current pointer

PTOUT: . BLKW 1 ; output buffer current pointer
BUFIN: . BLKW 1 ; begin adress of input buffer

BUFOUT: . BLKW 1 ; begin adress of output buffer
LGHBUT : . BLKW 1 ; lengh of one I/0 buffer

Au depart il faut que les buffers soient definis, il faut donc initialiser les
pParametres BUFIN, BUFOUT, LGHBUF. Ces parémetres‘peuvent évidemment étre donnes
comme valeurs immédiates dans les routines, si la taille et la position des
buffers sont invariables. Il faut egalement mettre les compteurs CNTIN et CNTOUT
a zéro, et initialiser le pointeur courant du buffer de sortie PTOUT au debut du

buffer. Les fichiers sont eégalement ouverts avec les numéros de canal dans INCH
et OUTCH.

ROUTINE DE LECTURE

. . . — R — R — —
m— L e m— e e > wEm—— .~ cm——

;This routine reads a character from the input buffer.
:When the buffer is empty, it fills itself with blocs from
sinput file. When the file is empty, there is no return

: from the routine but a short-cicult branch to ENDJOB.
:when a I/0 disk error occurs we have a short—-circuit

:branch onto ERROR.

$1ns s
;out: A = next character from input file | .
;moga: A,F

RDCAR:
PUSH DE : save on stack
PUSH BC
LOAD DE,PTIN ; init DE with buffer pointer
LOAD BC,CNTIN ; init BC with char counter
LOAD A,B : test 1f buffer
OR a,C ; 18 empty
JUMP. ,EQ RDCAR1 ; if yes read next file blocs
RDCARO:
DEC BC : else decrement char counter
LOAD CNTIN, BC . gave this new value
LOAD A,(DE) : read the char from buffer
INC DE : increment pointer
LOAD PTIN,DE . gave this new pointer
POP BC y restore from gstack
POP D
RET ; and return

RDCAR]:

LOAD
L.OAD

DE,BUFIN
BC, LGHBUF

Numeérisé par micromusee.ch

init DE with buffer begin
init BC with buffer length

e e -~ .

LOAD A, INCH init A with input channel
W ?RDBLK ; read blocs from file
JUMP . ,CC RDCARO test 1f I/0 error occurs
COMP A, #EREOF 1f yes, test if end of file
JUMP,NE ERROR 1f not, branch to ERROR
LOAD A,B else test i1if O char

OR A,C

JUMP ,EQ ENDJOB 1f yes, branch to ENDJOB
JUMP RDCARO ; else read 1in buffer

e T e e

e

ROUTINE D'ECRITURE

’ ______—"\
; WRCAR >
3 =========/

;This routine writes a character into the output buffer.
;When the buffer is full, it writes the buffer into output

;When a I/0 disk error occurs we have a short—-circuit
;branch onto ERROR.

;in: A = character
sout: -
;mod : F
WRCAR:
PUSH DE ; save on stack
PUSH HL
LOAD DE , LGHBUF ; init DE with buffer length
A LOAD HL , CNTOUT ; init HL with char counter
W ?COMPHLDE ; test 1f buffer is full
JUMP, ,EQ WRCAR1 ; 1f yes, write buffer to file
WRCARO:
INC HL : else increment char counter
LOAD CNTOUT,b HL : save new counter value
LOAD HL, PTOUT ; init HL with buffer pointer
LOAD (HL),A ; write char into the buffer
INC HL ; increment poilinter
LOAD PTOUT, HL : save new pointer wvalue
POP HL
POP DE : restore from stack
RET : and return
WRCAR1:
PUSH BC : save on stack
LOAD - B,D : init BC with buffer length
LOAD C,E
LOAD DE, BUFOUT : init DE with buffer begin
LOAD H,A ; save char in H
LOAD A,OUTCH ; init A with output channel
W ?WRBELK : write buffer into file
JUMP,CS ERROR : branch to ERROR if I/O error
LOAD A,H : else restore char in A
LOAD PTOUT,DE : gave new buffer pointer
LOAD HL, #0 : clear char counter
POP BC : restore from stack
JUMP WRCARO : write char into buffer

Numeérisé par micromusee.ch

REMARQUE IMPORTANTE :

Il ne faut pas oublier en fin de programme que le buffer de sortie contient
certainement des informations non encore transferees dans le fichier de sortie.
Il y @ donc lieu de vider ce buffer de la maniére suivante:

LOAD DE, BUFOUT ; write to output file
LOAD BC, CNTOUT ; the contains of output
LOAD A ,OUTCH : buffer

W ?WRBLK

JUMP,CS ERROR

8-6—4—2 BUFFER DE LECTURE POUR LA GESTION D'ENREGISTREMENT

Il est parfois nécessaire de pouvoir traiter une succession d'informations de
longueurs egales ou différentes entre elles, mais certainement presque jamais
eégales a la longueur d'un bloc ou a un multiple supérieur (par ex: une ligne, un
enregistrement). Ainsi, avec l'acceés par bloc il est pratiquement certain que le
buffer contiendra a la fin UNE INFORMATION TRONQUEE.

Il sera donc nécessaire de ne pas considerer cette partie du buffer durant le

traitement de l'information et de la reporter au debut du buffer avant de lire
la suite du fichier.

La routine ci-apreés realise ce travail.

Voicli tout d'abord les paraméetres utilises par la routine: -

SIZE: . BLKW 1 ; s8ize of input buffer
SAVCHA: .BLKB 1 ; temporary channel save
FLGEOF: .BLKB 1 ; £ile EOF status

Seul le paramétre SIZE doit étre preéalablement initilalisé. Au debut la longueur
utile DE est eévidemment égale a SIZE. Par la sulte c'est la valeur rendue par la
routine elle méme. Le paramétre soft end BC, est généralement determineé par le
traitement de l'information. Il pointe la premiére position non significative.

This routine fills the buffer pointed by HL of usefull length

DE with software end. That means shift unused part at beginning
and complete with maximum possible number of blocs ; from channel A file.

; Return new usefull length. If end of file occurs A = zero.
If end of file and buffer empty occur return CS and file 1s closed.

BUFFER DEFINITION

ad

; l-—used—part—of—buffer--[--unused—part—- empty part /L

H A A\

; HL = begin BC = goft end physical end
; (mmm————— DE = usefull length————————=—=} of buffer

; in: HL = begin of buffer pointer

; DE = usefull length of buffer
; BC = software buffer end pointer
; A = channel

: out: DE new usefull length of buffer
: CS et DE = 0 if end of file (mean buffer empty)

: A = disk end of file status (null i1f EOF occur)
: mod: AF,BC,DE

3.6-9

FPILBUF :

FILBUO:

FILBULl:

rIi.BUZ:

FILBU3:

FILBU4%:

LOAD SAVCHA, A
LOAD FLGEOF,A
PUSH HL |
PUSH HL

ADD HL, DE

EX HL, DE
LOAD H,B

LOAD L,C

W ? COMPHLDE
JUMP ,HS FILBU4
PUSH. HL

EX HL, DE

OR ALA

SUBC HL, DE
LOAD B,H

LOAD X

POP HL

POP DE

PUSH BC

LDIR

LOAD BL, SIZE
POP BC

OR A,A

SUBC HL,BC
LOAD L, #0
PUSH BC

LOAD B, H

LOAD C,L
LOAD A, SAVCHA
W ?RDBLK
JUMP.,CC FILBU1
COMP A, #EREOF
JUMP , NE ERROR
XOR A,A

LOAD FLGEOF,A
POP HL

ADD HL, BC
LOAD A,H

OR A,L

JUMP. ,EQ FILBU3

E&
POP
LOAD
RET

LOAD
. W

JUMP ,CS

<y iy &

POP
LOAD
PUSH

HL,DE
HL
A, FLGEOF

A, SAVCHA
2CLOSE
ERROR

FILBUZ

DE

HL, #0
HL
FILBUO

~ . e e e

e

e

e

e ~ s e e el 4 e

e e e e T

e e e

“e

e

.

Numeérisé par micromusee.ch

save channel
set no EOF flag
save twice
begin of buffer

compute buffer end
DE = buffer end

HL = software buffer end

test if still valid bytes
if not, jump

else save soft buffer end
HL = end DE = soft end
clear carry

compute offset

BC = offset

restore soft end as from

restore beg of buffer as (o
save offset
move offset to beg of buffer

HL = full size of the buffer
restore offset

clear carry

compute free space in buffer
in bloc multiple

save offset

BC = free space in blocC

restore channel

read blocs

1f no error skeep

else test 1f end of file
if not, abort

clear no EOF flag

restore offset

compute new buffer length
test 1f buffer

buffer empty

if yes, jump

else DE = new length
restore begin of buffer
A = EOF status

and return

restore channel
close the file

abort 1f error

get carry

restore begin of buffer
set 0 on stack
as null offset

