Mis a disposition par Jean-Daniel Nicoud Numérisé par micromusee.ch

Mars 2024

MARYG

SMILE, EPRO, ETEX, AS:

EDITEURS ET ASSEMBLEURS

Septembre 198]

EPSITEGC-system sa

Numerisé par micromusee.ch

EDITEURS ET ASSEMBLEURS POUR SMAKY6

TABLE DES MATIERES

'.J

Introduction

Description générale des programmes
Introduction

Environnement hardware
Environnement software

j o e
9 b)) B

Les éditeurs
1 Organisation de la mémoire RAM
e 2 Le clavier, la syntaxe
3 Insertion de caractéres, édition de textes
. & Déplacements du pointeur
o Effacements de textes
6 Travall dans 10 buffers
7 Copies et transferts
. 8 Recherches et comptages
9 Changements et €changes
.10 Conversion majuscules minuscules
- e | Macros
e Al Entrées et sorties
.3 Divers
.14 Messages d'erreurs

FD B 1D B M 19 M) DM iyl

. Les assembleurs

Le langage

Définitions

Le fichier source

La ligne d'instruction

La ligne d’'affectation

Les pseudo-instructions

Le travail de l'assembleur
LLe fichier objet

abuwNWt‘JH
W N

Ww W w w w wwwiw

wn

s

EPRO, l'éditeur de programmes

ETEX, l'éditeur de textes

AS, l'assembleur paramétrisable
SMILE, l'éditeur-assembleur-debugger

-3 O N

Numerisé par micromusee.ch

1. DESCRIPTION GENERALE

L P Introduct%gn

e R

La collection de programmes deécrits dans cette notice a pour but d'aider au
développement de programmes, au dépannage de ceux—ci et a la reédaction de

documents. Ce but ne peut etre atteint au moyen d'un outil unique et implique un
développement pas a pas.

Le premlier pas est la redaction de documents prealables, tels que cahier des
charges, documentation preéliminaire, notice. Cette eédition se fait au moyen du
programme ediliteur de textes (ETEX) qui permet la correction aisée en cours de
route.

Le second pas est l'edition et le test des differents modules du programme. Un
eéditeur—assembleur—debugger (SMILE) facilite grandement la mise au point des
difféerentes routines composant le programme. Le morcellement d'un programme de
grande taille en plusieurs modules testés séparément augmente beaucoup la
vitesse de developpement.

L'assemblage de tous les modules en un programme final et la mise au point de
celul--ci utilise trois programmes speécialisés, l'éditeur, l'assembleur et le
debuger. |

La rédaction definitive des modes d'emplol et des descriptions se fait a nouveau
avec l'éditeur de textes.

Les programmes utilitaires developpés pour le SMAKY 6 permettent de travailler
de facgon efficace et rapide.

1.2 Environnement hardware

Le systeéme SMAKY 6 supporte tous les programmes mentionnés dans le preéceédent
paragraphe. Ce systéme comprend un processeur (Z80), 64k bytes de mémolre RAM,
2k bytes de mémoire ROM, un écran et un clavier. La mémoire ROM contient
1'operating system et une librairie de routines. L'écran alphanumérique-—graphique de
20 lignes de 64 caracteres et 256x120 points travaille en mode DMA directement
dans la mémoire RAM du systéme. Le tout est agrémenté d'une multitude
d'interfaces avec le monde extérieur (clavier, interfaces série/paralléle,
controleur de mémoire de masse..). Trois types de mémoire de masse sont

actuellement disponibles:

- Micro-floppy
- Micro—-disque
- Cobus

La mémoire de masse Cobus donne la possibilité de dialoguer a plusieurs avecC une
mémoire de masse importante au travers d'un réseau. Cobus est employé a l'Ecole

Polytechnique Feédérale de Lausanne.

1.2 Environnement software
i B s e it -5 M 1 o

Les differents programmes présentés dans les precédentes sections ne peuvent
etre opérationnels que s'ils sont entoures d'un systéme opératoire et d'une
collection de routines systéme; on se référera aux autres notices SMAKY pour

étudier ces questions.

Numerisé par micromusee.ch

2. LES FDITEURS

Les differents éditeurs a disposition sont:

ETEX éditeur de textes
EPRO éditeur de programmes
SMILE éditeur de programmes et assembleur

Les descriptions qui suivent reéunissent les caracteristiques des trois

editeurs. Les chapitres consacres a chacun d'eux traiteront des exceptions et
des différences,

2.1 Organisation générale de 1l'editeur

2.2 Le clavier, la syntaxe

Un éditeur doit etre aussi simple & utiliser qu'une machine a ecrire. Les
editeurs du SMAKY 6 ont une philosophie d'actions naturelles instantanees.
L'action sur une touche correspond naturellement a 1° inscription sur la touche
pressee, et se traduit immédiatement par son résultat definitif. Par exemple

l'eédition de textes se fait directement dans le texte deéja ecrit et non dans une
ligne de commande.

Pour éviter une floraison de touches correspondant chacune a une fonction
d'eédition, un codage simple est obtenu a l'aide de 7 touches fonctions et de
quelques touches lettres repérees par des fléches (collées sur les tranches).
Chaque combinaison de touche(s) fonction génére en fait un nouveau clavier (un
peu comme la touche SHIFT pour les minuscules et les majuscules),.

Sur le dessin du clavier standard ci—dessous, les touches fonction encadrent la
barre d'espacement.

oHEHEOENHEEEHERS
LIS EIVD ol LT
EhER R LR
EC T HE MOooEEE=EEE
=g mEo=s

- - - _+IJ.! il L % VA . : I. al oA R‘. 3 '._‘ . .
o LA, S~ LI, Gl ST K A ST i S LSBT AP, o A EDATRIT 5

Chague touche fonction doit éetre maintenue pressée pendant le temps nécessaire
a la depression et au relachement de la touche associée
g
2) 3))
| ,]l l lsuowl] 3 | ’saowl,
i 3 SHOW 3

SHOW SHOW

Exemple: SHOW du buffer #3

Numerisé par micromusee.ch

_4__

La représentation graphique suivante a éteé deéfinie pour mettre en évidence les
actions sur les touches qui sont parfois simultanées et parfois conseécutives.

La touche F est pressée isolément
La touche H puls la touche A sont |
actionnées,

La touche CURSOR est maintenue pressée durant

le temps de (-:E)

M. @ CURSOR et KILL sont maintenus

presseés pendant

puls (une folis que tout a été relache)
G est presseé.

DEFINE Htexte La touche DEFINE est pressée et relacheée,
puis un texte quelconque peut étre écrit.
texte est identique a (E)—C)>—E)—€E)r—(e)
L3 Insertion de caracteéres

Si 1l'on ignore les touches fonctions, le clavier est standard et l'insertion de
caracteéres dans un texte est une opération ne nécessitant pas de commande
spéciale. Le programme éditeur réagit comme une machine a écrire avec en plus la
facilite de corriger le texte écrit sans laisser de trace. Quelques touches ont
des fonction spéciales: il s'agit des touches RETURN et TAB . La premiére a
pour effet de terminer la ligne en cours et de passer a la ligne suivante. La
seconde sert a se positionner a des endroits bien preécis sur l'éecran,
généralement toutes les huilt colonnes.

1.e graphisme adopté pour 1l'insertion de caractéres est le suilvant:

insertion

., La correction en cours de frappe se fait avec la touche BS qui efface le
dernier caractere tapé. D'autres modes de correction plus évolués seront

décrits plus loin.

Numeérisé par micromusee.ch

2.4 Déplacements du pointeur

Contrairement a la machine a écrire, l'insertion d'un nouveau caractére au
milieu d'un texte est possible. Le pointeur ou curseur clignotant sert a repeérer

touche fonction CURSOR employée en conjonction avec certaines touches du
clavier. Voicl en détail la représentation graphique de tous les deéplacements de
pointeur possibles.

Dans ce qui suilt nous appelons champ une suite de caractéres termineés par une
virgule, un tabulateur, un point-virgqule ou un retour de chariot.

§
O
e,
E

Déplace le pointeur au deébut du texte

é

@
)

Déplace le pointeur a la fin du texte

Deéplace le pointeur d'une position vers la gauche

@
i

Déplace le pointeur d'une position vers la droite

Deplace le pointeur d'un champ vers la gauche ou a la
fin du champ courant

E E

Deéplace le pointeur d'un champ vers la gauche ou au
début du champ courant

Déplace le pointeur au début de la ligne précédente
ou de la ligne courante

1
;

Déplace le pointeur a la fin de la ligne suivante
ou de la ligne courante

m. Déplace le pointeur de 4 lignes en arriére ou au
début du paragraphe préeceéedent
MOB Deplace le pointeur de 4 lignes en avant ou au

debut du paragraphe précédent

Pour resumer les 10 commandes précedentes on écrira:

* 4

2 Déplacements du curseur

Numérisé par micromusee.ch

....6.....

D'autres commandes permettent de bouger le pointeur seulement dans une
direction (horxizontalement ou verticalement).

Par exemple, déplacer le curseur dans la ligne inférieure sans le déplacer
horizontalement.

(CURSOR()CTRL(). A) Déplace le pointeur vers le haut, si possgible,
sans le déplacer horizontalement

(CURSOR()CTRL() ~) Déplace le pointeur vers le bas, si possible
sans le déplacer horizontalement

e B — T — ——— v -

(CURSOR()CTRL() <@) Déplace le pointeur de 4 lignes vers le haut
S1 possible sans le déplacer horizontalement

T TR R SN WA, .\ — WY [f— . . - e — | — e

(CURSOR()JCTRL() W) Déplace le pointeur de 4 lignes vers le bas,
si possible sans le déplacer horizontalement

(CURSOR()CTRL() €=) Déplace le pointeur d’'une position vers la gauche
(CURSOR()CRTL() =»_) Déplace le pointeur d'une position vers la droite

(CURSOR()CTRL() @ ™) Dpéplace le pointeur au début de la ligne visible
sur l'écran

(CURSOR()CTRI(y B) Déplace le pointeur a la fin de la ligne visible
sur l'écran

Pour résumer

(CURSORCYCTRL(Y = < -

Numeérisé par micromusee.ch

2.5 Effacement de textes

La conjonctlion des touches fonction CURSOR et KILL a pour effet de détruire
(enlever, effacer) des parties de texte. La dimension du texte détruit est
donnée en appuyant sur une touche de déplacement. Il est possible de détruire un

caractere, un champ, une ligne, 4 lignes ou un paragraphe, ou tout jusqu'ia la
fin du texte et ceci en avant ou en arridre.

e —————— e e
(. CURSOR () KILL_Q‘;*;*:-) effacement

Afin de faciliter 1les corrections au moment de l'édition, deux touches
naturelles permettent d'effacer un caracteére en avant ou en arridre.

(_BACK SPACE) (CURSOR () KILL (&=)
(_DELETE) (_CURSOR () KILL {_ =»)

En d'autres termes, la touche BACK SPACE efface le caractdre situé en arridre
du pointeur, alors que la touche DELETE efface le caractére sous le pointeur.

Pour effacer tout 1le texte en amont et en aval du pointeur, on tape
respectivement:

e

(_CURSOR () KILL { @&
(_CURSOR () KILL @&)

Le systéme demande 8&les-vous sOr ?. Presser sur la lettre O pour exécuter la
commande.,

Une pression sur la touche (ESC) permet d'annuler la ou les derniéres
destructions, c'est—-a-dire de faire réapparaitre ce qui vient d'étre effacé,

2.6 Travail dans les dix buffers

L'éditeur permet l1l'édition de dix textes ou parties de textes simultanément. Il
v a en effet dix 2zones de travail (appelées buffers) a disposition de
l1'utilisateur. La touche SHOW permet le passage d'une zone a l'autre,

Soit le buffer 0 qui contient un texte; nous passons dans le buffer 1, qui luil
ne contient rien en tapant:

(_SHOW () 1)

Suite & cet ordre, l'écran se divise en deux parties, l'ancien buffer (0) en
bas, le nouveau buffer (1) en haut. Ceci permet la comparaison des deux textes,
Da&s maintenant, il vous est possible d'éditer dans le buffer 1. Pour afficher ce

buffer sur tout l'écran, 1l faut répéter la commande
(SHOW () 1 _).

En résume:

(SHOW () 0..9) affiche le buffer sélectionné
en écran double pulis simple.

Pour tuer le contenu d'un buffer qu’ on ne voit pas, 1l faut taper:
(TCURSOR () KILL () 0..9)

Le systéme demande éles-vous sGr ?, Presser sur la lettre O pour tuer le buffer.

Numerisé par micromusee.ch

- W Copies et transferts

Afin de faciliter les copies et transferts d'informations d'un buffer a l'autre,
11 existe des commandes realisant ces fonctions.

Dans une premiére opération, il s'agit d'initialiser le buffer de destination de
la copie; le buffer de source est toujours le buffer dans lequel on se trouve.
Ceci est reéaliseé au moyen de la touche COPY suivie du numéro du buffer de
destination.

Le transfert d'information se fait en pressant simultanément la touche COPY et
une touche de deéplacement en avant.

Copions par exemple une partie du buffer 0 dans le buffer 1; nous tapons

(_COPY () 1)

L'eécran se seépare en deux et montre en haut le buffer source (buffer 0) et en bas
le buffer destination (buffer 1).

Tapons maintenant

COPY (|

La commande COPY a pour effet de copier 4 lignes du buffer 0 dans le buffer 1.

Pour des raisons évidentes, il n'est pas possible de copier en arriere.
La commande

COPY () &)

correspondant a un déplacement arriére a une signification spéciale: elle copie
tout le buffer source quelle que solt la position du pointeur dans le texte.

De la méme facgon, 11 est possible de transférer (copilier puls deétruire) tout ou
partie de buffer source dans le buffer destination. Cette opération est realiseée
comme dans le cas des effacements en associant a la touche COPY et la touche
KILL .

Par exemple le transfert d'une ligne du buffer source 1 dans le buffer destina-
tion 2 se fera de la fagon suivante:

(CopPY () 2)
(C KILL CC

Notons qu'il es‘: également possible d'insérer sous le pointeur le contenu d'un

buffer autre que le buffer principal. Ceci est employé pour 1insérer des
en—-tetes, des titres et autres motifs dans le buffer principal. La commande est

la meéme que l'initialisation d'une copie, excepté que le numéro du buffer est
donné en maintenant la touche CTRL pressée., Si la touche fonction KILL est
simultanément maintenue pressée, l'original de la copie est detruit.

COPY copie
transfert (source détruit)
tE . D destination
[CTRL () 0..9) ingertion

'CTRL () KILL () O..¢ insertion avec destruction

Numeérisé par micromusee.ch

2.8 Recherches et comptages

Pour se déplacer dans de grands textes, plutdt que de se servir de la touche
CURSOR, 11 est préférable de définir une chaine de caractdres et de rechercher
cette chaine dans le texte par un ordre approprié. Un autre ordre permet de
dénombrer les occurences de cette chaine (par exemple pour compter des mots—clés
ou le nombre de répétitions d'un mot trop souvent utilisé).

Avant de commencer les deux opérations précédemment décrites, il est nécessaire
d'éditer la chaine de caractéres a chercher ou compter. Cette chaine de

caractéres dolit étre é€ditée dans un buffer réservé a cet effet, inaccessible par
l1'utilisateur au moyen des commandes usuelles.

Pour définir cette chaine, la séquence suivante doit étre introduite:
DEFINE chaine DEFINE DEFINE

La premiere pression sur la touche DEFINE a deux conséguences:

- Elle détruit le précédent contenu du buffer de définition.

— Elle affiche sur l'écran le buffer de définition dans la partie supérieure et
le buffer d'édition dans la partie inférieure.

Pour éditer la chaine de caractéres, toutes les facilités d'édition sont 2a
disposition (déplacements, effacements). La seconde pression sur la touche

DEFINE a pour seul effet d'insérer dans le texte édité un double crochet
pointu, La troisiéme pression sur la touche DEFINE affiche de nouveau Jle

buffer principal sur tout l'écran, la chaine définie étant mémorisée de facon
invisible,

La recherxche de la chaine de caracteéres définie préalablement se fait au moyen
de la touche fonction SEARCH combinée aux déplacements avant ou arriére.

(M recherches

Le curseur s'arréte sur la premliére occurence en avant ou en arrieéere, trouvée
dans le texte. Il est placé au début de la chaine qu'il fallait trouver.

La recherche s'effectue 1ndifféremment avec les majuscules et les minuscules. Par
exemple, la chaine de recherche "Fenetre"” permet de trouver "fenétre", "FENETRE",

"FeneTRe", etcC.
L.a recherche peut durer plusieurs secondes. Une pression sur la touche END

permet d'interrompre la recherche.

Les comptages se font sans déplacement du curseur. Le comptage du nombre
d'occurences se fait en aval, en amont ou & travers tout le texte. Le résultat

du comptage est affiché au haut de 1l'écran

(_SEARCH () { }") comptages aval/amont

SEARCH () €% comptages partout

Pour réafficher le buffer de définition sans détruire son contenu, il suffit de

presser sur
(CHANGE () DEFINE)

M

On peut éditer la chaine avec les ordres usuels,.
I1 faut presser sur DEFINE pour sortir de ce mode.

Résumé des ordres de recherches et comptages:

om0

Numerisé par micromusee.ch
- 10 ~

2.9 Changements, échanges.

Il est non seulement possible de rechercher des chaines de caracteéeres, mais
aussi de les changer contre une chaine de remplacement. Celle-~ci peut d'ailleurs
étre de longueur nulle, ce qui revient a detruire une chaine donnée.

Avant de commencer une opération d'échange, il est nécessaire de definir la
chaine a rechexcher et la chaine de remplacement. Celles—-ci sont éditées dans le
buffer reserve a cet effet, inaccessible a l'utilisateur au moyen des commandes

usuelles. Seule la séquence d'ordres ci-dessous permet d'éditer les deux
chalnes.

(DEFINE chainel DEFINE chaine?2 DEFINE

La premiére pression sSur la touche DEFINE a deux conségquences:
— Elle detruit le preécedent contenu du buffer de définitions.

- Elle affiche sur l'écran le buffer de travail dans la partie inférieure.

Il faut ensuite taper la chaline de caracteéres a changer. La seconde pression sur

la touche DEFINE a pour seul effet d'insérer dans le texte édité un double
crochet a droite qui est a interxrpréter comme devient ou subsitué par.
Il faut encore taper la chaine de remplacement.

La troisiéme pression sur la touche DEFINE affiche a nouveau le buffer
principal sur l1l'écran.

L.e changement de l'occurence précédente ou suivante s'obtient en combinant la
touche fonction CHANGE a un déplacement d'un caractére en arriére ou en avant.

(CCHANGE {) €= _=>)

Si 1l'on de veut pas forcément changer l1l'occurence suivante, on peut alterner

SEARCH () =») et CHANGE =).

si les changements a effectuer sont nombreux, il est possible d'échanger toutes
les occurences au-dessus ou au—-dessous du pointeur, voire meme toutes les
occurences du buffer.

(CHANGE (j I i) changements multiples

IL'élimination d'une chaine de caractéres donneée est en fait le remplacement de
cette chaine par une autre chaine de longueur nulle. La définition se fait de la

fagcon suivante:

(DEFINE y— texte (—(DEFINE { DEFINE

La syntaxe des changements est la méme que ci—dessus.

Résume des commandes de changements:

(_CHANGE _ 4%+ ' changements

Numeérisé par micromusee.ch
- ll —

2,10 Conversion majuscules minuscules

Il est possible de changer une lettre, un mot, une phrase, etc. de majuscules et

minuscules, ou 1inversement. Les fléches de déplacement sont utilisées pour
définir l'amplitude du changement.

Si la lettre correspondant au déplacement est majuscule, la conversion

minuscule —-> majuscule est effectuée et si elle est minuscule, la conversion
minuscule —--> majuscule est effectuée.

EE———— . T
(PROGRA()_C}_H_A_N_G_E_QQ o s conversion minuscules --> majuscules

(majuscules)

(PROGRA()C"H‘AN’GET conversion majuscules —-> minuscules
minuscules)

Les lettres minuscules accentuées sont transformées en majuscules, et les
lettres majuscules sont transformées en minuscules sans accents (forcément).

Numeérisé par micromusee.ch
— 12 —

2.1l1 Macros

Les macros offrent la possibilité de mémoriser une séquence de touches

(insertion de caractéres, déplacements, destruction,...), puis de répéter cette
ségquence.
(PROG§§?3EACRO) démarre la mémorisation d'une séquence de touches.

Le nom de l'éditeur (sur la premiere ligne de
l'écran) apparait en inversé pour indiquer ce
mode MACRO. Toutes les commandes réagissent
maintenant comme avant, l'éditeur mémorise
simplement tout ce que l'utilisateuzr fait.

Une pression de (PROGRA()END) termine la
mémorisation.

(MACRO Exeécute la séquence de touches mémorisée

La séquence de touches est mémorisée dans le buffer numéro 12. Il est possible
de travailler dans ce buffer avec la commande (SHOW()MACRO). Chaque topche
mémorisée occupe une ligne du buffer 12, de la fagon suivante:

par exemple ’//,300 — liﬁ correspond a A
code de la touche code de la touche principale
fonction en octal en octal

Le buffer 11 peut étre utilisé comme n'importe quel autre buffer. Par exemple,

11 est possible de le modifier (d'ajouter de nouvelles touches), de la sauver
sur disque, etc .

(CHANGE(YMACRO) permet de compléter la mémorisation d'une
gséquence de touches. Les nouvelles touches
tapées sur le clavier sont insérées a l'endroit
ou est situé le curseur dans le buffer 11.

Aprés l'exécution d‘une MACRO (MACRO), 1le
curseur est a la fin du buffer 12.

(CURSOR(JMACRO) Exécute répétivement la séquence de touches

mémorisées. La touche END permet de stopper
a la fin de l'exécution de la MACRO

permet de stopper n'importe quand

Si une touche fonction quelconque (CURSOR, COPY, KILL, ...) est pressée pendant
1'exécution, 1l'écran montre tout ce qui se passe. L'exécutlion est donc nettement

plus lente.

Numeérisé par micromusee.ch
- 13 .

2 .12 Entrées et sorties

Un éditeur de textes/programmes sans communication avec le monde extérieur est
inutilisable. Il est nécessaire de pouvoir sauver le texte édité sur une mémoire

de masse ou un periphérique, puis de récupérer ce texte lors d'une séance de
travail ultérieure.

Pour permettre le sauvetage du texte édité, la commande COPY DEFINE suivie
d'un nom de fichier aura l'effet désiré. Apreés l'éxécution de cette commande, la

totalité du Dbuffer dr'édition aura été recopiée sur le fichier, voire le
périphérique, mentionné.

. COPY Y DEFINE £ilenames

L'opé€ration inverse, la lecture d'un fichier, se fait au moven de la commande

(SHOW @gFINE) suivie du nom du fichier a lire. Celui-ci est inséré & partir de

la position du pointeur jusqu'a concurence de la place disponible. En général,
on insére dans un buffer vide.

(" SHOW) DEFINE filename

Pour éditer un fichier plus long que la demi-place maximale disponible sur la

disquette, 11 faut éditer son fichier par tranches de dimensions inférieures au’
maximum, le reste du texte résidant sur disque.

La commande ((COPY() SHOW(DEFINE) est une combinaison des deux commandes

précédentes. Chaque action de celle—-cl écrit sur le disque le contenu du buffer

d'édition et, aprés avolr rendu la place ainsi libérée, améne 1la tranche
sulvante du fichier en mémoire -Jusgqu'a concurence des deux—-tiers de la place

disponible. A la premiére action sur (COPY()SHOW { DEFINE) , l'opérateur est
invité a taper le nom du fichier qu'il veut éditer. Deux cas se présentent
alors:

~ le fichier n'existe pas, et l'éditeur le crée, chague commande

(_corY’)sHOW (DEFINE) écrivant et ajoutant le contenu du buffer sur le disque.
— le fichier existe, et l'éditeur améne la premiére tranche en mémoire.

Il est possible de compléter ces ordres par une réservation entre crochets,

Si le fichier est gros, (COPY()SHOW()DEFINE)-—{EEEE] charge le buffer courant
avec une partie du fichier, en laissant environ 10 000 caracteéres pour rajouter du
texte ou utiliser les autres buffers.

L'ordre (COPY()SHOW()DEFINE) permet de passer a la partie suivante du fichier,
en sauvant le début.

Résumé des ordres d'entrée-sortie:

(SHOﬁ”-DEFIHEr—{filenamel
(Cﬁ?Y:QDﬁPINE}—{EiieBameI
(sHOW(,COPY -DEFIWQ‘

REMARQUE: filename peut étre un nom de fichier disque ou un nom de périphérique
(par exemple: 3SLP, $PR, %PP, ...).

Numeérisé par micromusee.ch

2.13 Appel de l'éditeur et retour au systéme

Pour appeler l'éditeur, on tape son nom suivi du nom du fichier a créer ou a
modifier. Par exemple EPRO somme &

Si le programme "somme.SR" existe, il est chargé par EPRO.

Dans le cas contraire, la question Crée SOMME.SR ? est posée, et l'utilisateur
doit confirmer en tapant O.

Pour quitter l'éditeur la commande suivante rappelle le systéme d'exploitation.

Dans le cas ou l'éditeur est en train de traiter un fichier par tranches, cette
commande finira de recopier le fichier d'entrée sur le fichier de sortie.

sortie de l'éditeur

Apres cette commande l*utilisateur doit répondre & une question; la premiére
ligne de l'écran apparait comme suit:

M(ise a jour, E(diteur, C(atastrophe

S1 l1l'utilisateur répond 'M', 1l'éditeur met & jour la copie du fichier sur

disque. Dans notre exemple, il sauve le programme édité dans le buffer 0 sous le
nom "SOMME.SR", en détruisant l'ancienne version "SOMME.SR".

S1 l'utilisateur répond 'C' on quitte l'éditeur sans mettre & jour la copie sur
disgque donC sans recopier les modifications éventuelles effectuées. La touche

'E' permet de retourner a l'éditeur si la commande PROGRA-END a été donnée par
erreur.,

2.24 Messages d'erreurs

En cas d'erreurs ou d'opérations spéciliales, des messages apparalissent dans la
premiére ligne de l'écran. En voicl leur signification:

Mémoire pleine signale que la mémoire texte est pleine; il faut sauver ou
détruire une partie des textes se trouvant dans les buffers.

Commande impossible est la réponse a une commande impossible et qul n'a pas été
executée.

Chaine pas trouvée signifie que la chaine a cherxcher n'a plus pu étre trouvée.

Chaine inexistante apparait lors d'une recherche ou d'un changement lorsque la
chaine de recherche n'a pas été définie

Macro incorrecte apparait pendant 1l'exécution d'une macro lorsque le contenu du
buffer 11 n'est pas correct

Détruit 1'ancien fichier XXX sgignale que l'on essaie de copier sur un fichier
qui existe déja et demande s'il faut détruire l1l'ancienne version pour la
remplacer par la nouvelle. Une frappe sur les touches Y ou) le permet; toute
autre tonuche fait avorter l'ordre,.

Map.dr 3:rror et Sys.dr error signalent une panne hardware du gystéme ou une
destruct ion d'une partie du programme. Si aucune erreur de manipulation ne s'est
produit«:, faire subir un test de fiabilité au systeme.

Numerisé par micromusee.ch
- 15 =

3. LES ASSEMBLEURS

Les assembleurs AS et SMILE ont un certain nombre de caractéristiques communes

decrites dans ce chapitre. Les commandes et exceptions spécifiques a ces
programmes sont données dans les sections particuliéres de ces programmes.

3.1 _I. langage

CALM (Common Assembly Language for Microprocessors) est un ensemble de
notations pour assemhleurs de microprocesseurs, deéveloppé a 1'FPFL dés 1974.

Il est caractérisé par un nombre restreint de mnémoniques clairs pour exprimer
la fonction exécuteée par l'instruction, et par des opérandes dont la liste suit
le mnémonique, le mode d'adressage de chaque opérande étant décrit par une
expression i1ndiquant avec précision le calcul effectué pour obtenir l'adresse.

Quelques signes specliaux sont nécessaires pour préciser ces modes d'adressage.

T mode normal, pour lequel l'adresse est une adresse dilrecte en mémolire, ne
nécessite aucun signe.

Par exemple, pour lire la valeur de la position 42500, appelée SAVPC, on écrit
ILOAD A, SAVPC

Pour lire la position sulvante, on peut ecrire
T.OAD A,SAVPC+1 (c'est 1'assembleur qui fait l'addition).

Pour préciser que ce n'est pas le contenu de la position mémoire, mais la valeur

de 1'adresse que 1'on veut transférer, 11 faut écrire

LOAD HIL, #SAVPC
HT, contient alors une adresse mémoire valable, que 1'on peut utiliser pour
pointer et lire le contenu de cette position, en écrivant

1.OAD A,(HL) |
T.a parentheése indique que ce n'est pas la valeur dans HL qui est transférée dans
A (il vy aurait d’'ailleurs absurdité car A est un registre 8 bits et ne peut pas
recevoir l1e mot de 16 bits contenu dans HL).
NDes processeurs eévolués (16 bits) admettent des expressions compliquées comme

T.0AD A, {HTL.)Y+DEPT, ;1la valeur DEPL est ajoutée
:a la valeur dans HL pour
robtenir l1'adresse

T.0OAD A, (HL)Y+(B) :la valeur 8 bits dans B est
;ajoutée a la valeur dans HL
;pour obtenir 1'adresse

Torsque la position mémoire d'adresse donnée contient l'adresse de la valeur, et
non pas la valeur, on parle d'adressage indirect et on utilise le signe &) (at).
Par exemple

T.OAD A, ADADVAL

Peu de microprocesseurs actuels ont 1l'adressage indirect.

Avec les microprocesseurs 8 bits, une lettre simple est utilisée pour un
registre 8 bits: B, C. Une lettre double pour un registre 16 bits: BC, IX.

I.es microprocesseurs 16 bits ont une structure plus riche qui

oblige a préciser 1a longueur du registre dans le code de 1l'instruction:

.OAD.B RO,ADVAIL charge les 8 bits a l'adresse ADVAL

I.OAD.W RO,ADVAL charge les 16 bits aux adresses ADVAL
et ADVAL + 1

10AD.I, RO,ADVAIL charge 32 bits (long word).

Numeérisé par micromusee.ch

3.2 Déefinitions

Seéparateur:

Un séparateur est a choix une suite non vide d'espaces (noté SPACE, BLANK ou),
de virgules ou de tabulateurs (TAB). Le tabulateur définit l'emplacement du
prochain caractére comme étant au moins une position plus loin et a une distance
multiple de 8 du premier caractére de la ligne. Dans la pratique, le choix entre

la virgule ou le tabulateur est fixé par le contexte. L'espace est rarement
utilisé comme séparateur.

Expression:

Une expression est formée de nombres, symboles, parenthéses et opérations
arithmétiques. Lorsque la valeur des symboles utilisés est connue, la valeur de
l'expression peut-&tre calculée, avec un résultat entier. Suite & une division,
la partie fractionnaire est tronquée, sans arrondi. ILa représentation en
meémolre est un nombre arithmétique dont la longueur dépend de l'instruction.
L'assembleur signale les dépassements de capacité lorsqu'il calcule une
expression. La définition est récursive étant donné que le facteur d'une

expression peut étre une expression, avec les reégles de parenthéses
habituelles. '

Exemples: 612+(20-1)»40
(154+(200/(2%x3)))*((2+3)-1)

Les opérations de groupage (parenthéses) et de puissance (A) ont la priorité sur
les opérations multiplicatives, fois (%), divise (/) et ET logique (&) qui elles
ont la priorité sur les opérations additives plus (+), moins (-) et OU logique
(!). Le complément a deux d'un terme s'obtient au moyen du moins unaire (-). Le

"non booléen" s'obtient au moyen du signe " A" (par exemple: A0 vaut 377
A1 vaut 0 WeUEIT O 5464 A~7377 vaut 0),
Exemples: (2*3)+(4x5) est équivalent a 2x3+4x5,
malis (2+3)x(4+5) n'est pas égal a 2+3x4+5

Symboles et nombres:

Avec les notations de symboles et de nombres, on atteint le dernier niveau de
définitions. Les diagrammes de syntaxe ne contiennent plus de rectangles
impliquant de nouvelles définitions. Un symbole commence 1oujours par une
lettre, un point d'interrogation (?) ou un souligné (_) , pcur le distinguer
d'un nombre. Le point isolé est un symbole particulier quli a v ileur du compteur
d'adresse pour la ligne considéreée.

Exemples de S oles: TOTO
?DICAR
HELLO?
UN_SYMBOLE
Exemples de nombres: 123
177777
19.

Un nombre peut étre une suite de chiffres dans la base courante ou une suite de
chiffres terminée par un point auquel cas le nombre sera analysé comme décimal.
Une derniére catégorie de nombres est le caractére ASCII précédé par une
apostrophe (par exemple. 'B vaut 102 octal). Dans ce dernier cas Cce sera le

code du caractére gqui sera considéreé.

Exemples d'expressions complexeg:
TRUC!2 "MACHINI(5-BIDULE)!1l

(L00000-FINMEM)/400
(ADRESSE&(400~-1))+OFFSET

Numérisé par micromusee.ch

- 17 =

e e el e ——— — ————— A =g e

Un fichier a assembler est une suite de lignes contenant toute l'information
permettant de créer automatiquement un fichier binaire exécutable.

Le fichier est formé de lignes séparées par des retours de ligne notés CR ().
Une premiere analyse montre que certaines lignes contiennent les instructions
proprement dites (lignes d'instructions), d'autres sont des lignes
d'affectation qui servent a assigner une valeur 2 un gymbole, D'autres lignes
sont des pseudo-instructions servant de guide pour 1'assembleur et définissant
des symboles et positions mémoire. Une ligne de fin termine le fichier. Elle

peut éventuellement étre suivie par d'autres lignes, mais celles-ci seront
1ghorées par l'assembleur.

3.3.1 La_ligne d'instruction

Une ligne d'instruction est formée d'une étigquette, qui caractérise

l'emplacement mémoire, de l'instruction proprement dite et d'un commentaire.

Une ligne d'instruction peut ne pas avoir d'étiquette ou avoir plusieurs
étiquettes, sur la méme ligne ou non.

Exemples: instruction
LOOQOP : instruction

ETIQl: ETIQ2: instr. ou ETIQL: ou ETIQL:

' ETIQ2: instr. . ETIQZ2:

instr.

Etiquette:
Chaque étigquette est contituée d'un symbole, c'est—-a-dire d'un mot représentant
un nombre (en l'occurence une adresse) suivi du signe ":". Des sgséparateurs

peuvent étre utiles de part et d'autre du symbole, mais ne sont pas nécessaires.
Certaines étiquettes sont classées spécialement et portent le nom d'étiguettes
locales. Elles sont caractérisées par le fait qu'elles comportent un ou deux
chiffres suivi du signe '§' et que leur domaine de validité n'existe qu'entre
deux étiquettes normales.

Exemples: LOOP :
10%: (étiquette locale)
Instxuction:

Une instruction comporte au moilns un code mnémotechnigue o©ou mnémonigue
caractérisant l'opération effectuée par le processeur. Un séparateur précede
généralement ce code et doit suivre si une condition de test et/ou des opérandes

précisent l'opération.

Commentalires:

Un commentaire est caractérisé par le signe ";". Un texte quelconque peut—étre
écrit jusqu'a la fin de la ligne, celle-cli étant caractérisée par un retour a la

ligne. Les commentaires sont ignorés par l'assembleur.

3.3.2 La ligne d'dffectation

Une affectation est caractérisée par le signe "=", Elle permet d'agsigner une
valeur a un symbole.
Exemples: BIDULE = 1

CHOSE = (BIDULE+5)%3

Numeérisé par micromusee.ch
- 18 -

3.3.3 Les pseudo-instructions

On distingue les pseudo-instructions de commande, qui sont des instructions
généxales pour l'assembleur (mise en pages, action sur compteur d'adresses,

choix de la base, etc.) et les pseudo-instructions de génération quli réservent
ou assignent des positions mémoire.

Pseudo—-instructions de commande

. TITLE

donne un titre au programme. Ce titre est répété au début de chaque page du
listing. Il est recommandé de n'employver cette pseudo que comme premiere ligne
du programme afin de faciliter la gestion de la table des matiéres.
Exemple: .TITLE DEMONSTRATION ;commence une nouvelle page

. SBTTL

permet de nommer des parties de programme en leur donnant un sous-titre qui sera
imprimé au début de chaque page, a coté du titre du programme. De plus, une

définition de sous—titre éjecte une page du listing afin de débuter le nouveau
chapitre au début d'une page.

. LOC

initialise le compteur d'adresses courant a la valeur suivant la pseudo. Si
cette pseudo n'est pas définie au début du listing, SMILE prendra 100000 comme
valeur par défaut, tandis que AS prendra 0 comme valeur part défaut.

Il est conseillé de ne pas utiliser la pseudo-instruction .LOC avec SMILE lorsque
l1'on veut exdcuter le programme assemblé avec (PROGRA()V). Cette valeur 104000
risque d'étre changée dans les révisions ultérieures.

.ALIGN 1
permet d'aligner le PC de l'assembleur a une valeur a choix (donc par exemple de
faire commencer des parties de programmes a des adresses rondes)
Exemple: ALIGN 400
TABLE : . %

. 2C
permet l'utilisation de plusieurs compteurs d'adresses. La valeur quil suit 1la
pseudo est le numéro du compteur et dolit étre comprise entre 0 et 7 inclus.

Exemple: ROM = 0
RAM = 1
. PC ROM
. LOC 0
.PC RAM
. LOC 100000
;variables
. PC ROM
; Programme
o B2 RAM
;une variable supplémentalre
. PC ROM

;suite du programme

.END
signale & l'assembleur la fin du fichier source. Les lignes sulvantes sont

ignorées. La valeur qui suit la pseudo est l1l'adresse a laquelle le programme
doit commencer son éxécution lors de son chargement. S1 aucune valeur n'est
spécifiée, ce programme ne pourra pas étre charge, mals sera quand méme

assemble,

. PAGE
éjecte une page de listing & un endroit quelconque du programme afin d'en

améliorer la lisibilitée.

Numeérisé par micromusee.ch

- 19 -

. LINES

permet de cholsir le nombre de lignes par page. .LINES O

’) (zérxro) donnera un
listing continu.

. LIST

permet de n'imprimer que certaines parties d'un programme suivant la valeur de
l'expression booléenne qui suit.

Exenmple: LIST 0 supprime le listing
LIST 1 autorise le listing

. PROC

permet de générer du code pour un processeur au cholx, pour autant que le

fichier de paramétres soit disponible sur la mémoire de masse.
Exemnple: .PROC Z80

. REF

déclare que le fichier dont le nom suit la pseudo doit é&tre pris comme fichier

de définition (évite de surcharger le fichier source de définitions et autres
affectations). L'extension réservée a ces fichiers de définition est .ST

Exemple: . REF SM6 charge le fichier de définition SM6.ST

. RADIX (ou .RDX)

définit la base du systéme de numération utilisée par l'assembleur. La valeur
qul sult la pseudo est analysée dans la base courante, donc dans ['ancienne base;

Pour éviter toute confusion, 1l est conseillé de donner la valeur de la nouvelle

base au moyen d'un nombre décimal (terminé par un point). La base d'entrée par
défaut est la base 8 (octal).

Exemple: .RADIX 16.
passe au systéme hexadécimal

. OCT, .HEX

définissent la base de sortie. C'est dans cette base que sera imprimé le
listing. La base de sortie par défaut est l1l'octal.

o1&

assemblage conditionnel si la valeur de l'expression booléenne qui sult la
pseudo est différente de zéro

.ENDIF
signale la fin d'une partie assemblée conditionnellement.

.ELSE
située entre un .IF et un .ENDIF, cette pseudo a pour effet d'inverser la
condition calculée au .1IF précédent.

Exemple: LOAD A, TRUC
A SMAKY
SUB A,#2
. ELSE
ADD A,#5
.ENDIF
LOAD C,A
etc.

. INS

permet d'insérer un source dans un programme. Ce source sSera assemblé de la méme
manieére que le programme maitre, sauf les erreurs éventuelles qui sont
gimplement affichées sur 1l'écran, sans étre copiées dans le nouveau Source,
Exemple: .INS SYS.RF

a méme effet final que .REF SM6

mais est plus lent

Numeérisé par micromusee.ch
- 90 -

Pseudos de génération

. BLKB
réserve en mémolire le nombre de bytes indique.,

Cette valeur dolit étre calculable lors de la premiére passe de l'assembleur.
Exemple: . BLKB 64.

réserve 64 bytes

. BLKW
reéserve en mémolre le nombre de mots indique

.BYTE ou .B

géenére du code pour toutes les valeurs qui suivent sous forme de bytes
consécutifs

Exemples: +RADIX 16
.BYTE 123
. BYTE 99,
. BYTE ‘A .
.BYTE OA3 ;comme les nombres doivent

;commencer par un chiffre,

;on a ajouté un 0 (zéro) devant
; 1le nombre hexa A3

Dans ce cas, on peut écrire plus simplement:
N 123,99.,"'A,0AB

(virgule, espace ou tab pour séparer)

.WORD ou .W
géneére du code pour toutes 1les wvaleurs qui suivent sous forme de mots
consécutifs.

Exemple: . WORD 34567

I1 est possible de générer des bytes et des mots mélangés en déclarant une

pseudo du type .BWBBW qui, dans ce cas générera un byte suivi d'un mot, de deux
bytes et d'un mot et cecli cycliquement.

ASCII
mémorise dans des paires de positions mémoire successives les codes ASCII de
tous les caractéres entre guillemets
Exemple: LASCII "BONJOUR"
.ASCII "texte"

.ASCIZ
comme ASCII, mais ajoute un byte nul aprés les codes ASCII des caractéres (les
codes speéciaux a insérer dans la chaine sont mis entre parenthéses pointues.,
Exemple: ,ASCIZ "texte de <¢15><12> lignes"”

,ASCIZ "signe<'"> et signec<'<«"

Numeérisé par micromusee.ch
o dY -

3.4 Le travall de l'assembleur

L'assembleur transforme le fichier source en code binaire conformément aux

pseudo—-instructions de commande et a l'aide de la table de description du
procesgsseur. L'assembleur travaille en deux passes:

Lors de la premiere passe, il se contente de collectionner tous les symboles en
leur attribuant une ,valeur si celle-ci est definie. Il controle également la

gsyntaxe des differentes instructions et enléve les anciens messages d'erreurs
qui subsistent.

Lors de la seconde passe, l'assembleur géneére le code binaire dans le fichier
specifieé, Tl fournit eégalement un listing de l'assemblage si celui-ci a eéte
demandeé. Le travail le plus caché est l'insertion des messages signalant les
erreurs dans le fichier source directement. A la fin de la seconde passe,
l'assembleur adjoint une cross-référence map au fichier listing permettant de
retrouver plus facilement les différents symboles dans le programme. Le travail
terminé, 11 ne reste plus qu'a signaler le nombre d'erreurs a l'utilisateur
(auquel cas le fichier binaire est automatiquement détruit) ou que l'assemblage
a eté realiseé sans decouverte d'erreur. Cecl ne veut pas dire que le programme
assemble fonctionne de fag¢on satisfaisante |

3.5 Le fichier obijet

Le fichier objet généré par l'assembleur est directement une image mémoire du
fichier tel qu'll sera en mémoire lors de son exécution.

L'avantage de cette forme de représentation réside dans un chargement treés
rapide, aucune conversion de code n'ayant lieu,

Le desavantage est la place occupée sur disque par des programmes occupant les
deux extrémites de la mémoire. Ces derniers n'étant pas 1les plus courants,

l1'utilisateur s'accomodera de cette petite faiblesse.

Numerisé par micromusee.ch

4. EPRO: 1'éditeur de programmes

Pour éditer le programme source, on utilise 1'éditeur EPRO .,
Cet éditeur permet de travailler avec des fichiers ayant l'extension .SR par

défaut. Lorsque l'éditeur est chargé, la ligne supérieure de 1'écran donne les’
informations suivantes:

e e o o e e e e e e e e e e e [Term de 17640 % Cteonr.,
BB R R AT R S . S — -, " R (0 (C I'L :u -onO

......................... Nomdro ¢u bulfer dans lequel on
eC trouvve.

[e s e i e TlovBe de coractiéres Cany co

_ { hoelfesr.,
* ' ' Ve o e e e e e Norhre total de caorccfidren
: iy : : cicpenibles Cars ce hulfer.
! ! ! !
D, SR SN N D T
EPRO 4-72 0/1 345/38767 O0=TEST. SR. 91/05ﬁg}m1§ 19:25
e S R e R e e et e Y >
: { ¢ (
fleaniedy o DULTRY s ‘ : : :
A S ... o Ml : < AL ¢ n
: ~oLl e C: Cr = ——m—— 3 .

Les caractéristiques de cet éditeur ont été décrites au début de la notice. On

se contentera ici de donner des indications sur les diverses manieres de charger
un programme source, de le corriger et de le sauver.

EDITION D'UN PROGRAMME

Il vy a deux fagons d'éditer un programme, suivant sa grandeur:

1) Edition d'un programme court

On entend par programme court un programme qui peut étre contenu entiérement
dans un buffer d'EPRO.

Depuils le CLI, taper

EPRO qui charge l'éditeur

Il est alors possible d'éditer un nouveau programme.,

Pour lire un ancien: programme depuls la disquette, taper

(_SHOW () DEFINE Y nom # |

Pendant 1'édition du programme, 1l est prudent de faire réguliérement des copies
de sécurité, en tapant par exemple:

(" COPY () DEFINE

Lorsqu'un ancien fichier T.SR existe déja sur la disquette, 11 faut répondre
(0) & la question "Détruit l'ancien fichier T 2"

Lorsque l'édition est terminée, on donne l1l'ordre

(COPY () DEFINE_ }—{nom/ |

pour sauver le programme sur la disquette. Si le fichier "nom.SR" existe déja
et qu'‘on désire le remplacer par la nouvelle version, on tape (O) en réponse a
la question "Détruit l'ancien fichier nom.SR ?7".

L'ordre (' PROGRA_() END) permet de quitter EPRO.

e — L — - R e e — S ————

Si (PROGRA()END) est tapé par erreur, il suffit de presser sur E pour retourner
a l'éditeur.

Pour retourner au CLI, il faut encore presser sur (S).

Numeérisé par micromusee.ch
—-— 23 —

2) Edition d'un long programme
Un long programme est un programme qui ne peut pas &tre contenu en entier dans

le buffer 4'EPRO; dans ce cas on parlera de pages, une page étant le contenu
d‘un buffer 4d'EPRO.

(_EPRO) charge l'éditeur

(_COPY () SHOW () DEFINE)y—{nom] lit la premidre page du programme
"nom.SR" dans un buffer 4d'EPRO
Il est alors possible d'éditer la premidre page du programme.

(_COPY () SHOW () DEFINE)
€crit la page courante sur la disquette, puis 1lit la page suivante.

W — —— BT e — —— ——— . W T — -

(PROGRA () END) permet de quitter d'éditeur.

L e e,y —

(E) retourne a l'éditeur
(M) recopie la totalité du programme sur le disque

) (méme les pages que l'on n'aurailt pas lues)
(C_) retourne au CLI sans mettre & jour le programme

Remargue :

La commande (EPRO)1nom¢:l est eéquivalente a la séquence
|EPRQ¢|
(COPY () SHOW () DEFINE nom ¥

De plus 11 est possible d'éditer des programmes courts comme des longs
programmes (le contraire n'étant évidemment pas vrai !)

La commande EPRO nom nouveau/N permet de créer le fichier nouveau.SR a
partir du fichier nom.SR. 2Aprés avoir fait quelques modifications puis
(PROGRA () END_) , le fichier nouveau.SR contiendra donc les modifications,

tandis que le fichier nom.SR ne sera pas change€.
Cette commande peut é&tre utile pour éditer de trés long fichier en mettant le

fichier a é&éditer sur DXO0 et en créant le nouveau fichier sur DX1 avec 1la
commande EPRO nom DX1:nouveau/N

R O ED N 5N Ee w8 WG SRS U See

EEEEE PPPP RRRR 000
E P P R R O 0
EEE PPPP RERRIL O 0
E P R R O 0
EEEEE P R R 000
Majuscules minuscules. —==(fléoches () CHANGE |)
—
- (! PROGRA)-——-
I
Minuscules masjuscules. -=(FLECHES () CHANGCE 1)
Ajde &8 !'untilisateur., =——————ceeeccaec—- (H |)
W
(| SHOW) oo
|
Affiche les CRs, TABs., ——————e—e———cac—- (CR, TAB 1)
Suppricme les CRs, TABs., —-—=—=—rm—m—c—mec-- (CR, TAB 1)
. | ———
(I EILL) —ene
Détrvit un fichier. ——— file ——=~=—- (DEFINE i)

Dézrre ou stoppe
] 'enregictrement 4d'une ——————ccacecceene-
macro.

REILEE 1T GG ETONY ., emmairiiei—n—

(ERND

() PROGRA)-—-

it ¢ ABC..)—-
: ------------------ (___BS _)=—-
: ------------------- (— DEL __)=—-
: ------------------- (ESC) —-
: ------------------- (MACRO _)=---
(1 MACRO) ———m=—m—————e
(m) S

| ——m) ——m |
~—~(CURSOR_ 1) (1T flaches)—-

(I‘“Tﬁﬁi?’%ﬁ
(: 0..9)——-
~(C SHOW ([) 0..9)=———————————-
I ——
(: R LDE IR e -

| === o |
-~(__COPY_ 1) (T fliches)-——-

~(" _SHOW (1) DEFIRE)==—=m—=m——————-
-

-=-(COPY (!) SHOW () DEFINE g o

i R B

~(IDEF INE)=~c 1==(_DEFINE)~-|~--c2-
e e |
——(__CHANCE) ===)==—=|

l
I
l
|
I
I
l
|
I
I
I
I
I
I
I
|
I
I
I
I
I
l
I
I
I
I
I
!
I
I
I
l
I
I
|
l
I
l
I
I
I
I
I
!
|
I

Numeérisé par micromusee.ch

5. ETEX: l1'éditeur de textes

Ce programme est prévu pour l'édition de textes au kilometre, texte qui sera mis
en page par d'autres programmes ou par des imprimantes intelligentes.

Les principales différences entre ETEX et EPRO sont:

1) Lorsque l'on a tapé une ligne de 64 caracteéres:

Avec EPRO: Sl l'on continue a taper (sans presser RETURN), les caractéres
sulvants sont mémorisés, mais restent invisibles pour l'utilisateur. Il vy a

toutefois une possibilité de les visualiser en déplacant latéralement 1'écran

au moyen de l'oxdre (SHOW) combiné avec une déplacement horizontal (S, D, F
ou G).

Aprés le RETURN, un "!" signale que la ligne déborde.

Avec ETEX: le changement de ligne se fait automatiquement. Les mots de fin de
ligne qui sont trop longs sont reportés a la ligne suivante (sans é&tre coupés).

2) Deplacements:

LLes déplacements avec la touche CURSOR n'ont pas le méme effet.

Par exemple:

Avec EPRO, (CURSOR () C) descend d'une ligne,

Avec ETEX, QEQURSOR () C) ge déplace d'une phrase, c'est a dire
se positionne sur le prochalin point.

e SR e— e — - -— ®

3) (PROGRA() P) permet de voir le texte comme il serait avec EPRO,
c'est—-a—-dire que chagque ligne de l'écran correspond a un paragraphe., Dans ce
mode, les déplacements sont 1dentiques a ceux d'EPRO, y compris les

o — e B B R ——

déplacements horizontaux (SHOW() fléches).

(PROGRA(T) permet de revenir a l'affichage en mode ETEX.

4) Extensions prises par défaut:

Avec EPRO: .SR
Avec ETEX: .TX

L e - 4 e ——— S — —

e e o e s e e (C_ ABC..)-—-

LEEEE TTTTT EEEEE X X |

> T K X X e (RS) e
BEEL T 04 04 04 D X |
I\ T | O X X P ——— (DEL_ | pa—
EELEE T EEEEE X X | -
| e e o o e e o 0 0 e e e (ESC) oo
l
oo s e 0 e e s s e et (MACRO) o
T R W SO — | o s
Magjuscules minuscules. ==(__ fld3ches () CHANGE 1[) | (T MACRO .)=————eemo——-
e I l L
Minuscules majuscules. =—-(_ FLECHES () CIANGE 1) | (I CTRL () fl&ches)——-
SPE—) l N
Affiche en coupant lesg ——————emmem—eaa—-— S I P | | =) = |
mo ts. e — |-~ CURSOR |) (| fladches)-——-
(1 PROGRA)=~-=) 0 |
N, | (T_XILL__ D)
Affiche une ligne par ———————emea———- (P 1) l A—
paragraphe. . [7 0..9 , DA
|
Alde a4 1’utilisatour, ———=—recmccccaw- S | |-—(SHOW (1) 0..9 R
N S I
| (__SHOW) ==~ (1T MACRO) =———mm———————-
‘ IE——— 1 | |
Affiche les CRs, TADs., ~—~———————c——w- (_CR, TAB |) | B i 1™ g T D——
P | -
supprime les CRs, TABs. -—————r—emeee-- (CR, TAB 1|) |
T gy =]
(1 KILL) ===|=-=(_ COPY_ | (I flaches)~—-—-
R——— | l C
Détruit un fichior. === file ==—==- (__DEFINE | l (| KILL 1)
——— | | 1
(1 CHANCE)---—| | ~==>~==(C| CTRL () 0O..€
Démarre ou stoppe L l | l
P enregivtroendnt 4d'une —rmeeecsmieieamtaie (MACRO) , I T D S —
maclrro. S l il
CI_PROGRA) Rt R
B ey S— |-—¢C SHOW (Il) DEFINE)-————=———e——-—-
Quitie 1'é&diteur. ———=————ec————- (END () PROGRA)——-—| i
|--=C COPY (1) SHOW () DEFINE) —-
I
I A P
|-—C IDEFINE)--cl--(DEFINE)-=|==c2-
I l . [———>-
l | === =] -
S——{
|--(CHANGE |)-==>=——~
| _—"1____.__1.___.___.___
Pour forcer un saut de page: z. : M&}_LML"

L

(SHIFT () RETURN) | | |-—(SEARCH)=——=>————|

- e — - - - — Ay — - .

Numerisé par micromusee.ch
- 27 -

L'editeur de texte est complete par un programme de justification: JUSTIF.

UTILISATION DE JUSTIF.SH

Ce programme permet, 4 partir d'un texte tapé au km avec ETEX, de e mettre ep page en
choisissant la largeur de ta olonne et e type de Justification.

On arpelle Ip erogramme en tarant:

JUSTIF 2

Puis op répond aux auestions qui asparaissent sur !'écran.
On indigue ainsi successivement:

. Le nom du texte & traiter avec son extension

. Le nomt du fichier de sortie {un no# de fichier dissue
ou $LP 2our obtenir directesent une CORié FaPier)

. La largeur de l1a colonne (en nombre de caractéres)

. L2 tyre de justification,

L {1eft) correseond 4 une Jjustification 38 gauche seulenent
R (right) correspond A une Justification @ droite seulement
C (center) centre chaque !igne (sans Justification)

A (aligned) Justifie des deux cotés

(Mttention: ces romsandes doivent étre en maJjuscules)

Dans la version actuelle ce JUSTIF 1es tabulateurs sont considérés comue des BSPaces
Sine|es,

Numeérisé par micromusee.ch

- 28 -

6. AS; l'assembleur paramétrisable

Prendre une disquette contenant les fichiers:

EPRO.SM (éditeur de programmes)

SM6.ST ou FLO.ST (symbols prédéfinis)

AS.SM (assembleur)

Z80 .SM (module pour le processeur Zs80)
XREF .SM (générateur de cross-références)

Pour é€diter le programme source, on utilise l'éditeur EPRO .

On indique au début du programme les pseudos ufilisées, solt en général:
TITLE ESSAI

. PROC 480
. REF SM6

. LOC 100000

Pour assembler le programme ESSAI.SR, les ordres suivants peuvent étre donnés:

AS ESSAI assemble le fichier ESSAI.SR et génére un binaire ESSAI.SM .
S'1l y a eu une ou plusieurs erreurs d'assemblage, ESSAI,.SR
contient les messages d'erreurs, et le fichier ESSAI.SM
n‘existe pas.

AS ESSAI/L assemble le fichier ESSAI.SR et génére un binaire ESSAI.SM et un
listing ESSAI.LS

AS ESSAI TOTO/L assemble le fichier ESSAI.SR et génére un binalre ESSAI.SM et un
listing TOTO.LS

AS ESSAI/L/X assemble le fichier ESSAI.SR et génére un binaire ESSAI.SM, un
listing ESSAI.LS et une cross-référence ESSAI.XR .
Les lignes dans le fichier listing seront numérotées pour
permettre une recherche a l'aide de la cross-—-référence.

AS ESSAI TOTO/B assemble le fichier ESSAI.SR et génere un binalre TOTO.SM .,

AS ESSAI/S assemble le fichier ESSAI.SR et génére un binalire ESSAI.SM et

une table des symbols ESSAI.ST .
Cette table des symbols pourra étre utlilisée a l'aide de la

pseudo-ingstruction .REF ESSAI .

AS ESSAI/E agsemble le fichier ESSAI.SR et génére un binaire ESSAI.SM et un
fichier contenant les messages d'erreurs ESSAI.ER .
ESSAI.ER contient uniquement les erreurs rencontrés dans
les .INS . Les autres erreurs sont dans le fichier ESSAI.SR .

AS ESSAI/M agsemble le fichier ESSAI.SR et génére un binaire ESSAI.SM et un
fichier ESSAI.MS contanant les messages qul apparaissent

normalement gur l'écran.

AS ESSAI TOTO/N assemble le fichiexr ESSAI.SR et génére un binaire ESSAI.SM et un

nouveau fichier source TOTO.SR .
S'il y a une ou plusieurs erreursg, elles geront donc insérxées

dans le fichier TOTO,SR .

Numeérisé par micromusee.ch
o 38 -

Exemple d’'ordre complexe:
AS ESSAI/L TOTO/B/X TITI/E TATA/S
Assemble le fichier ESSAI.SR et génére les fichiers:

—~ ESSAI.SR nouveau source avec les erreurs édventuelles
— ESSAI.LS listing
— TOTO.SM binaire {(%'i1l n'v a pas ey d'erreurs)
- TOTO.XR cross—reférence
- TITI.ER erreurs dans les .INS
-~ TATA.ST table des symbols
RESUME :
switch extension contenu du fichier
I [PEEEI—— l _________________________
/B . SM binaire
/L .LS listing (x)

!
I
: | cross—référence (x)
ST 1 table des symbols (pour un .REF)
!
!
!

-,
PS
23

/E . ER erreurs dans les .INS (x)
/M . MS message de l'écran (x)
/N SR nouveau source (x)

Les (x) i1ndiquent des fichliers qul peuvent étre imprimés ou édités.

EXEMPLE :
Soit le source incorrect ESSAIKO.SR suivant:

TITLE ESSAIL

. PROC 280
. REF SM6

. LOC 100000

ESSAI: LOAD C,#LINES

W 21DIiS
LOOP: W 7GET

W ?DITEX

W ?7RETURN

JUMP . LOOP

. END ESSAL

Si on donne l'ordre AS ESSAIKO
on créera sur la disquette, au lieu du fichier exécutable ESSAIKO.SM, un nouveau
aource ESSAIKO.SR ou les erreurs sont mises en évidence.

Numerisé par micromusee.ch
- 30 =

Nous visuallisons ce source avec EPRO en donnant l'ordre EPRO ESSAIKO et nous
voyons maintenant sur l'écran:

. TITLE ESSAI

. PROC 480
. REF SM6

. LOC 100000

ESSAI: LOAD C,#LINES

W 2IDIS
LOOP : W ?GET
" Undefined symbol
W TDITEX
W ?RETURN
JUMP LOOP
.END ESSAI

Nous corrigeons la faute en remplacant ?GET pa.r ?GETLINE (le programme o&tera
lui-méme le message "° Undefined symbol"), nous sauvons le fichier corrigé sous
le nom ESSAI.SR et redonnons l'ordre AS ESSAI

Cette fois l'assemblage se fait correctement et le fichier exécutable ESSAI.SM
est créé sur la disquette,

Pour créer également un fichier listing, on donne l'ordre AS ESSAI/L qul cree,
en plus du binalre ESSAI,SM, le fichier listing ESSAI.LS, que nous pouvons
visualiser en donnant l1l'ordre EPRO ESSAI.LS .

[__30/01/91 12:17:43 TABLE OF CONTENTS]
i 01-01
| 01 ESSAI
g
30/01/81 12:17:43 ESSAT
01-01 |
|
. TITLE ESSAI .
| .PROC 280 ;
: . REF SM6 5
;
100000 . LOC 100000 ;
100000 016 024 ESSAI: LOAD C, #LINES
i 100002 347 126 W ?2IDIS
: 100004 347 005 LOOP: W ?GETLINE
f 100006 347 006 W ?DITEX
i 100010 347 043 W ?RETURN
| 100012 030 370 JUMP LOOP
' 100000 .END ESSAI
' 000009 references
source file 000011 usefull lines long
| Binary file 000014 bytes long
Assembly time: 0001 seconds 0660 lines/min

— . — -

Numeérisé par micromusee.ch
- 3]_ -
Remarques:

Les noms qul suivent l'ordre AS peuvent é&tre aussi des noms de périphériques
ou de fichiers sur une autre unité de disquette,

AS ESSAIL $SLP/L créera un listing du programme

Pour assembler les treés longs programmes, par exemple le BASIC, on réserve une

disquette pour le source, et l'autre pour le programme assembleur. On donne
alors l1l'ordre: AS DX1:BASICI573]

Pour pouvolr insérer les erreurs dans le source, l'assembleur utilise un fichier

temporalire ayant le méme nom que le fichier source, mais avec l'extension .SC
Les étapes successives sont:

1) destruction du fichier .SC
2) lecture ligne par ligne du fichier source .SR

3) écriture ligne par ligne dans le fichier .SC avec en plus
l'écriture des erreurs éventuelles

4) lorsque l'assemblage est terminé, destruction du fichier .SR
5) changement de nom du fichier .SC en fichier .SR

Pour pouvolr générer la cross-—référence, l'assembleur génére un fichier
intermédialre avec l'extension .XR ainsi qu'une table des symboles avec

l'extension .ST . Lorsque l'assembleur a terminé ses deux passes, 11 démarre le
programme XFER.SM qui 1lit les fichiers .XR et .ST et qui crée une
cross—référence imprimable avec l'extension .XR .

Si l'assembleur n'a pas suffisemment de place sur la disquette pour générer le

fichier intermédiaire .XR, le message "Xref map suppressed" apparalt sur
l'écran, puils l'assembleur continue normalement son travail.

Attention: l'assembleur utilise beaucoup de fichiers. La disquette doit pouvoilr
les contenir tous |

Pour chercher les erreurs, on charge le source avec EPRO, et on donne l'orxdre

(SEARCH () A).

On corrige les instructions erronées seulement; l'assembleur ote lui-méme les
messages d'erreur lors de la prochalne passe.

Numerisé par micromusee.ch

7. SMTTE: 1'éditeur-assembleur

SMILE permet de creer et de tester rapidement de petits programmes écrits en
langaqe d'assemblage CALM pour processeur Z80.

Creation _d'nin programme

1) Appeler l'éditeur-assembleur en tapant ISMTLEdl
2) Taper 1e programme

1) Sauwver tremporairement le programme toutes les 10 minutes

en donnant 1'ordre (_COPY () DEFINE)—{TJI
4) Sauver en donnant l1'ordre (COPY Zj DEFINE)—1nomuq
')

“) Quitter l'eéditeur par (PROGRA () END suivi de (0)

Modification d'un programme
1) T1 y a deux facons de charger un programme depuis la disquette

depuils le CL.I: taper |SHILR nomul
depuis SMILE: taper (SHOW () DEFINE }-4nomzl

2) Corriger le source
3) Le sauver en donnant dans tous les cas 1'ordre

(COPY () DEFINE){nom# |

4) Quhtter 1'editenr par PROGRA RND suivi de (0)

Assemblage d'un programme
Nonner 1'ordre (PROGRA () Z)

S'11 yv a des erreurs, le programme insérera des messages d'erreur dans le source

Recherche des erreurs

Donner 1'ordre (" SFARCH () A)

Exécution d'un programme
Avant d'exeécuter le programme s'assurer que le scurce ent sauve,

——————

Donner 1'ordre (PROGRA (Y V
S1 nécessaire, presser sur RREAK pour interrompre et sur SPACE pour afficher
lee reqictres, puis enrore une fois sur SPACE pour revenir dans SMILE.

Saunvetaage du binailre

Donner 1'ordre (PROGRA () B)

nuis 10 nom dn programme lorsque]1'écran montre FTLE:

Fichier listing
Nonner 1'ordre (PROGRA () T__)

puis le nom du programme Jlorsque 1'écran montre FILE:

Transmission du binaire format PDP11 par STMSER
Acscembler, puis donner 1'ordre (PROGRA () T)

Passage au _monilteur
NDonner 1'ordre (PROGRA () Q_)

Retour a SMILE en pressant S,

Destruction du binalre
Donner 1'ordre (KILL()CURSOR() B

pour détruire le binaire en mémoire (Cré€ par (PROGRA() Z). Cela permet de
gagner de la place pour éditer.

SSSS M M [11 L
S MM MM l L
SS8S MMDNM | L
S M M 1 L
SHSS rl Il 111 LLLLL
Asscmble., ————emmmmm—————— (. 72 B
|
Crée un fichier - (B D
biowailvre. |
Crée un fichicr === e (I, |)
lissUingy. R
Transmet le binaire —=——————meeeee—x . 1)
en format PDP. o |
Mlonitecur., ——=————ececm—————— (4] |)
l
(1
P p—— — '
Exécute., =—=——mmccemcae—-— (1)
i smiat———
Continune apreés un TRAP, -—=-——mmmemmemee—a (c 1)
|
Majguscules minuscules. ——(f{l2ches () CHANGE 1)
P ——— - —- N e . — e ——— ——— I
Minuscules majuscules. —-=(FLECIHES () CHANGE 1)
Aide 4 1’ntilisatenr. - ———cccccccaca- (_“_:___I_I______:!’,)
" -
(
AITIohia 128 PeEINIreN, = ocr oo - {1)

Affiche les CRs, TADs.

Supprime les Cits, TADBs.

Detruit un fichicr.

Quitte 1’Aditeur.

——— e — — — — — e —— | — — —

— — o —

END

CLEEEE
X
CEEE
I

 OF DF 04 D [

- ——— W S e —— — A - — — e — . — | ——)

() PROGRA) ~—--

ENUMEFS S FElM |G US89, chu

) ———

.
T S S G e T T — — Wm—— W— W— W— Wm—"8 Wm—m—" Amm—w—w Am—w o A A" A— — — — A A — — e AN A W— W—— (AN G O— W— OO Wh— —, O—, A o— m—m— AA—— Awmm—m m— ——

- —— A ——— S i A——, W W v— - e

_________ (__ _ABC.., Y o
--------- (BS __ _)--
--------- (____DEL)~
--------- (ESC) —-

(] CTRL () fléches)-—-
|
ROTUUITTURIN . oy ey FOURDRI —
-~(_CURSOR_ 1) (| _fl2aches)-—-
B —
(I KILL 1)
| J—
(| 0..9 Jiswn
~=(_ _SHOW (1) 0..9)———————————-
I
W —
(1 flaches)——=———m—m——-—-
gl]
~-(__GOPY D) (I_fisches)--
) RO |
(1 ILL 1)
l I —
, jrrmm)memm(| CTRL (D O
l
(L 8,..9 Jlesiaciaiimmneerne

- — -

e
——

e —————— 4 ——

~ COPY

L
1)

—— — — — — —— —— — ——

——(1DEFIRE)==c1==(DEFINE)= 1==¢2

SEARCI (1) flaches

| =—=>

|
)
!

| === === |

--(_EﬁKNGE_})—-—>-——-I
(_|_SEAI

~—(_SEARCH [)—==>—~—=|

