
Numérisé par jnicromusee.ch

SMILE, EPRO, ETEX, OS:

EDITEURS ET ASSEMBLEURS

Septembre 1981

I

Mis � disposition par Jean-Daniel Nicoud
Mars 2024

Numérisé par micromusee.ch

EDITEURS ET ASSEMBLEURS POUR SMAKY6

TABLE DES MATIERES

Introduction

Description générale des programmes
Introduction
Environnement hardware
Environnement software

Les éditeurs
Organisation de la mémoire RAM
Le clavier, la syntaxe
Insertion de caractères, édition de textes
Déplacements du pointeur
Effacements de textes
Travail dans 10 buffers
Copies et transferts
Recherches et comptages
Changements et échanges
Conversion majuscules minuscules
Macros
Entrées et sorties
Divers
Messages d’erreurs

3
3
3
3
3
3
3
3

1

3
3
3
3

.1

.2

Les assembleurs
Le langage
Définitions
Le fichier source
La ligne d’instruction
La ligne d’affectation
Les pseudo-instructions
Le travail de l’assembleur
Le fichier objet

6

EPRO, l’éditeur de programmes
ETEX, l’éditeur de textes
AS, l’assembleur paramétrisable
SMILE, 1’éditeur-assembleur-debugger

Numérisé par micromusee.ch

2

1. DESCRIPTION GENERALE

1.1 Introduction

La collection de programmes décrits dans cette notice a pour but d’aider au
développement de programmes, au dépannage de ceux-ci et a la rédaction de
documents. Ce but ne peut être atteint au moyen d’un outil unique et implique un
développement pas a pas.
Le premier pas est la rédaction de documents préalables, tels que cahier des
charges, documentation préliminaire, notice. Cette édition se fait au moyen du
programme éditeur de textes (ETEX) qui permet la correction aisée en cours de
route.

Le second pas est l’édition et le test des différents modules du programme. Un
éditeur-assembleur-debugger (SMILE) facilite grandement la mise au point des
différentes routines composant le programme. Le morcellement d’un programme de
grande taille en plusieurs modules testés séparément augmente beaucoup la
vitesse de développement. ♦ •
L’assemblage de tous les modules en un programme final et la mise au point de
celui-ci utilise trois programmes spécialisés, l’éditeur, l’assembleur et le
debugger. :
La rédaction définitive des modes d’emploi et des descriptions se fait a nouveau
avec l’éditeur de textes.
Les programmes utilitaires développés pour le SMAKY 6 permettent de travailler
de façon efficace et rapide.

1,2 Environnement hardware

Le système SMAKY 6 supporte tous les programmes mentionnés dans le précédent
paragraphe. Ce système comprend un processeur (Z80), 64k bytes de mémoire RAM,
2k bytes de mémoire ROM, un écran et un clavier. La mémoire ROM contient
1* operating system et une librairie de routines. L’écran alphanumérique-graphique de
20 lignes de 64 caractères et 256x120 points travaille en mode DMA directement
dans la mémoire RAM du système. Le tout est agrémenté d'une multitude
d’interfaces avec le monde extérieur (clavier, interfaces série/parallèle,
contrôleur de mémoire de masse..). Trois types de mémoire de masse sont

actuellement disponibles:

- Micro-floppy
- Micro-disque
- Cobus*

La mémoire de masse Cobus donne la possibilité de dialoguer a plusieurs avec une
mémoire de masse importante au travers d’un réseau. Cobus est employé a l’Ecole

Polytechnique Fédérale de Lausanne.

1.2 Environnement software

Les différents programmes présentés dans les précédentes sections ne peuvent
être opérationnels que s’ils sont entourés d’un système opératoire et d une

collection de routines système; on se référera aux autres notices SMAKY pour

étudier ces questions.

Numérisé par micromusee.ch

2. LES EDITEURS

Les differents éditeurs a disposition sont:

ETEX
EPRO
SMILE

éditeur de textes
Éditeur de programmes
Éditeur de programmes et assembleur

Les desc? iptions qui suivent réunissent les caractéristiques des trois
Éditeurs. Les chapitres consacres a chacun d’eux traiteront des exceptions et
des différences.

2.1 Organisation generale de l'Éditeur

2.2 Le clavier, la syntaxe

Un Éditeur doit être aussi simple a utiliser qu'une machine a Écrire. Les
Éditeurs du SMAKY 6 ont une philosophie d'actions naturelles instantanées.
L’action sur une touche correspond naturellement a l'inscription sur la touche
pressée, et se traduit immédiatement par son résultat definitif. Par exemple
l’édition de textes se fait directement dans le texte dÉja Écrit et non dans une
ligne de commande.

Pour Éviter une floraison de touches correspondant chacune a une fonction
d’Édition, un codage simple est obtenu â l'aide de 7 touches fonctions et de
quelques touches lettres repÉrêes par des flèches (collées sur les tranches).
Chaque combinaison de touche(s) fonction génère en fait un nouveau clavier (un
peu comme la touche SHIFT pour les minuscules et les majuscules).
Sur le dessin du clavier standard ci-dessous, les touches fonction encadrent la
barre d’espacement.

Chaque touche fonction doit être maintenue pressée pendant le temps nécessaire
a la dépression et au relâchement de la touche associée

■■ 1■■ ■ ■■

'SHOW SHOW SHOW SHOW SHOW3

Exemple: SHOW du buffer #3

Numérisé par micromusee.ch
- 4

La représentation graphique suivante a été définie pour mettre en évidence les
actions sur les touches qui sont parfois simultanées et parfois consécutives.

G F Z) La touche F est pressée isolément

G _ H J Q A La touche H puis la touche A sont
%

actionnées.

ÇcuRSORjG) La touche CURSOR est maintenue pressée durant

le temps de (")

(cursor;)
Kl LL

f DEFI NE)-| texte

G) CURSOR et KILL sont maintenus
pressés pendant ()

puis (une fois que tout a été relâché)
G est pressé.

La touche DEFINE est pressée et relâchée.
puis un texte quelconque peut être écrit.

texte est identique a

2,3 Insertion de caractères

Si l’on ignore les touches fonctions, le clavier est standard et l’insertion de
caractères dans un texte est une opération ne nécessitant pas de commande
spéciale. Le programme éditeur réagit comme une machine a écrire avec en plus la
facilité de corriger le texte écrit sans laisser de trace. Quelques touches ont
des fonction spéciales: il s’agit des touches RETURN et TAB . La première a
pour effet de terminer la ligne en cours et de passer a la ligne suivante. La
seconde sert à se positionner a des endroits bien précis sur l’écran,
généralement toutes les huit colonnes.

graphisme adopté pour l’insertion de caractères est le suivant:

AB. .) insertion

*

La correction en cours de frappe se fait avec la touche BS qui efface le
dernier caractère tapé. D’autres modes de correction plus évolués seront

décrits plus loin.

Numérisé par micromusee.ch
- 5 -

2.4 Déplacements du pointeur

Contrairement a la machine a écrire, l’insertion d’un nouveau caractère au
milieu d’un texte est possible. Le pointeur ou curseur clignotant sert a repérer
l’emplacement de la prochaine insertion. Le pointeur se déplace au moyen de la
touche fonction CURSOR employée en conjonction avec certaines touches du
clavier. Voici en détail la représentation graphique de tous les déplacements de
pointeur possibles.

Dans ce qui suit nous appelons champ une suite de caractères terminés par une
virgule, un tabulateur, un point-virgule ou un retour de chariot.

CcuksorQ 36-)

Ç cursotQ)

ÇcuRsorQ)

(CURSOF0 ~^)

Déplace le pointeur au début du texte

ÇcursorQ O

Déplace le pointeur a. la fin du texte

Déplace le pointeur d'une position vers la gauche

Déplace le pointeur d'une position vers la droite

Déplace le pointeur d'un champ vers la gauche ou a la
fin du champ courant

Déplace le pointeur d’un champ vers la gauche ou au
début du champ courant

f cursorQ Déplace le pointeur au début de la ligne précédente
ou de la ligne courante

Déplace le pointeur a la fin de la ligne suivante
ou de la ligne courante

ÇcursoiQ /) Déplace le pointeur de 4 lignes en arrière ou au
début du paragraphe précédent

ÇcursqfQ y Déplace le pointeur de 4 lignes en avant ou au
début du paragraphe précédent

Pour résumer les’10 commandes précédentes on écrira:

Déplacements du curseur

Numérisé par micromusee.ch
6

D'autres commandes permettent de bouger le pointeur seulement dans une
direction (horizontalement ou verticalement).
Par exemple, déplacer le curseur dans la ligne inférieure sans le déplacer
horizontalement.

(CURSORQCTRLC1 -J

(CÛRSOR()CTRL() ~)
O

Déplace le pointeur vers le haut, si possible,
sans le déplacer horizontalement

Déplace le pointeur vers le bas, si possible
sans le déplacer horizontalement

(CÜRS0R()CTRL()) Déplace le pointeur de 4 lignes vers le haut
si possible sans le déplacer horizontalement

CCURSÔR()CTRL() J Déplace le pointeur de 4 lignes vers le bas,
si possible sans le déplacer horizontalement

(CURSOR()CTRL(y Déplace le pointeur d'une position vers la gauche

(CURSOR()CRTL(~) Déplace le pointeur d’une position vers la droite

(CURSORf ÏÇTRLLL Déplace le pointeur au début de la ligne visible
sur l’écran

(CURSOR()CTRL() Déplace le pointeur à la fin de la ligne visible
sur 1’écran

Pour résumer

(CURSÔR()CTRL(

Numérisé par micromusee.ch
- 7 -

2.5 Effacement de textes

La conjonction des touches fonction CURSOR et KILL a pour effet de détruire
(enlever, effacer) des parties de texte. La dimension du texte détruit est
donnée en appuyant sur une touche de déplacement. Il est possible de détruire un
caractère, un champ, une ligne, 4 lignes ou un paragraphe, ou tout jusqu'à, la
fin du texte et ceci en avant ou en arrière.

O

effacement

Afin de faciliter les corrections au moment de l’édition, deux touches
naturelles permettent d’effacer un caractère en avant ou en arrière.

(BACK SPACE")
(_DELETE î (CURSOR ()

C CURSOR () KÏLLJ

En d’autres termes, la touche BACK SPACE
du pointeur, alors que la touche DELETE
Pour effacer tout le texte en amont
respectivement :

(~CURSOR () KILL
C CURSOR () KILLlT^ 3

efface le caractère situé en arrière
efface le caractère sous le pointeur,
et en aval du pointeur, on tape

Le système demande êtes-vous sûr ?. Presser sur la lettre O pour exécuter la
commande.

Une pression sur la touche (ESC) permet d’annuler la ou les dernières
destructions, c’est-à-dire de faire réapparaître ce qui vient d’être effacé.

2.6 Travail dans les dix buffers

L’éditeur permet l'édition de dix textes ou parties de textes simultanément. Il
y a en effet dix zones de travail (appelées buffers) à disposition de
l’utilisateur. La touche SHOW permet le passage d’une zone à l’autre.

Soit le buffer 0 qui contient un texte; nous passons dans le buffer 1, qui lui
ne contient rien en tapant:

G SHOW () 1)

Suite à cet ordre, l’écran se divise en deux parties, l’ancien buffer (0) en
bas, le nouveau buffer (1) en haut. Ceci permet la comparaison des deux textes.
Dès maintenant, il vous est possible d’éditer dans le buffer 1. Pour afficher ce

buffer sur tout l’écran, il faut répéter la commande
G SHOW () 13.

En résumé;

(’ SHOW () 0 . . 9 ') affiche le buffer sélectionné
en écran double puis simple.

Pour tuer le contenu d’un
(^CURSOR ()

buffer qu’on ne voit pas,
KILL () 0 . . 9 J

il faut taper:

Le système demande êtes-vous sûr ?. Presser sur la lettre 0 pour tuer le buffer.

Numérisé par micromusee.ch
8

2.7 Copies et transferts

Afin de faciliter les copies et transferts d’informations d’un buffer a l’autre,
il existe des commandes réalisant ces fonctions.
Dans une première opération, il s’agit d’initialiser le buffer de destination de
la copie; le buffer de source est toujours le buffer dans lequel on se trouve.
Ceci est réalisé au moyen de la touche COPY suivie du numéro du buffer de
destination.

Le transfert d'information se fait en pressant simultanément la touche COPY et
une touche de déplacement en avant.

Copions par exemple une partie du buffer 0 dans le buffer 1; nous tapons

(COPY () 1)

L'écran se sépare en deux et montre en haut le buffer source (buffer 0) et en bas
le buffer destination (buffer 1).
Tapons maintenant

(COPY () •

La commande COPY a pour effet de copier 4 lignes du buffer 0 dans le buffer 1.

Pour des raisons évidentes, il n’est pas possible de copier en arrière.
La commande

(copy (y S)

correspondant a un déplacement arrière a une signification spéciale: elle copie
tout le buffer source quelle que soit la position du pointeur dans le texte.

De la même façon, il est possible de transférer (copier puis détruire) tout ou
partie de buffer source dans le buffer destination. Cette opération est réalisée
comme dans le cas des effacements en associant a la touche COPY et la touche
KILL .
Par exemple le transfert d'une ligne du buffer source 1 dans le buffer destina­
tion 2 se fera de la façon suivante;

(COPY (>2)
(KILL (ï’cOPY (3 3

Notons qu'il es1: également possible d’insérer sous le pointeur le contenu d'un
buffer autre que le buffer principal. Ceci est employé pour insérer des
en—têtes, dés titres et autres motifs dans le buffer principal. La commande est
la même que l’initialisation d'une copie, excepté que le numéro du buffer est
donné en maintenant la touche CTRL pressée. Si la touche fonction KILL est
simultanément maintenue pressée, l'original de la copie est détruit.

(COPY

KILL

copie

transfert (source détruit)

destination

insertion

insertion avec destruction

Numérisé par micromusee.ch
- 9 -

2,8 Recherches et comptages

Pour se déplacer dans de grands textes, plutôt que de se servir de la touche
CURSOR, il est préférable de définir une chaîne de caractères et de rechercher
cette chaîne dans le texte par un ordre approprié. Un autre ordre permet de
dénombrer les occurences de cette chaîne (par exemple pour compter des mots-clés
ou le nombre de répétitions d'un mot trop souvent utilisé).

Avant de commencer les deux opérations précédemment décrites, il est nécessaire
d'éditer la chaîne de caractères à chercher ou compter. Cette chaîne de
caractères doit être éditée dans un buffer réservé à cet effet, inaccessible par
l’utilisateur au moyen des commandes usuelles.
Pour définir cette chaîne, la séquence suivante doit être introduite:

(DEFINE) |chalne|-- (DEFINE)—ÇPEFINE)

La première pression sur la touche DEFINE a deux conséquences:
- Elle détruit le précédent contenu du buffer de définition.
- Elle affiche sur l’écran le buffer de définition dans la partie supérieure et

le buffer d’édition dans la partie inférieure.
Pour éditer la chaîne de caractères, toutes les facilités d’édition sont à
disposition (déplacements, effacements). La seconde pression sur la touche
DEFINE a pour seul effet d’insérer dans le texte édité un double crochet
pointu. La troisième pression sur la touche DEFINE affiche de nouveau le
buffer principal sur tout l’écran, la chaîne définie étant mémorisée de façon
invisible.

La recherche de la chaîne de caractères définie préalablement se fait au moyen
de la touche fonction SEARCH combinée aux déplacements avant ou arrière.

recherches

Le curseur s’arrête sur la première occurence en avant ou en arrière, trouvée
dans le texte. Il est placé au début de la chaîne qu’il fallait trouver.

La recherche s’effectue indifféremment avec les majuscules et les minuscules. Par
exemple, la chaîne de recherche ”Fenetre” permet de trouver "fenêtre”, "FENETRE”,
"FeneTRe", etc.
La recherche peut durer plusieurs secondes. Une pression sur la touche END
permet d’interrompre la recherche.

Les comptages se font sans déplacement du curseur. Le comptage du nombre
d’occurences se fait en aval, en amont ou à travers tout le texte. Le résultat

du comptage est affiché au haut de l’écran

comptages aval/amont

(SEARCH comptages partout

Pour réafficher le buffer de définition sans détruire son contenu, il suffit de

presser sur ____
(CHANGE () DEFINE)

On peut éditer la chaîne avec les ordres usuels.
Il faut presser sur DEFINE pour sortir de ce mode.

Résumé des ordres de recherches et comptages:

(SEARCH

Numérisé par micromusee.ch
- 10 -

2.9 Changements f échanges.

Il est non seulement possible de rechercher des chaînes de caractères, mais
aussi de les changer contre une chaîne de remplacement. Celle-ci peut d’ailleurs
être de longueur nulle, ce qui revient a détruire une chaîne donnée.
Avant de commencer une opération d’échange, il est nécessaire de définir la
chaîne à rechercher et la chaîne de remplacement. Celles-ci sont éditées dans le
buffer réservé à cet effet, inaccessible a l’utilisateur au moyen des commandes
usuelles. Seule la séquence d’ordres ci-dessous permet d’éditer les deux
chaînes.

(DEFINE) {chalnel} (DEFINE)—(chaînez} (DEFINE)

La première pression sur la touche DEFINE a deux conséquences:
- Elle détruit le précédent contenu du buffer de définitions.
- Elle affiche sur l’écran le buffer de travail dans la partie inférieure.

Il faut ensuite taper la chaîne de caractères a changer. La seconde pression sur
la touche DEFINE a pour seul effet d’insérer dans le texte édité un double
crochet a droite qui est a interpréter comme devient ou subsitué par.

Il faut encore taper la chaîne de remplacement.
La troisième pression sur la touche DEFINE affiche â nouveau le buffer
principal sur l’écran.

Le changement de l’occurence précédente ou suivante s’obtient en combinant la
touche fonction CHANGE a un déplacement d’un caractère en arrière ou en avant.

(CHANGE Q <=■

Si l’on de veut pas forcément changer l’occurence suivante, on peut alterner

et (CHANGE ()<=>).

Si les changements a effectuer sont nombreux, il est possible d’échanger toutes
les occurences au-dessus ou au-dessous du pointeur, voire même toutes les

occurences du buffer.

(CHANGE changements multiples

L’élimination d’une chaîne de caractères donnée est en fait le remplacement de
cette chaîne par une autre chaîne de longueur nulle. La définition se fait de la

façon suivante:

(DEFINE) (DEFINE) <DEFINE)

La syntaxe des changements est la même que ci-dessus.

Résumé des commandes de changements :

changements

Numérisé par micromusee.ch
- 11 -

2,10 Conversion majuscules minuscules

Il est possible de changer une lettre, un mot, une phrase, etc, de majuscules et
minuscules, ou inversement. Les flèches de déplacement sont utilisées pour
définir l’amplitude du changement.

Si la lettre correspondant au déplacement est majuscule,
minuscule —> majuscule est effectuée et si elle est minuscule
minuscule —> majuscule est effectuée.

la conversion
la conversion

(PR0GRA()ÇHANGÉ

(majuscules
conversion minuscules —> majuscules

(PROGRA()CHÂNGE(j *• -J

(minuscules)
conversion majuscules —> minuscules

Les lettres minuscules accentuées sont transformées en majuscules, et les
lettres majuscules sont transformées en minuscules sans accents (forcément).

I

Numérisé par micromusee.ch
- 12 -

2.11 Macros

Les macros offrent la possibilité de mémoriser une séquence de touches
(insertion de caractères, déplacements, destruction,,..), puis de répéter cette
séquence.

(PROGRA()MACRO) démarre la mémorisation d’une séquence de touches.
Le nom de l’éditeur (sur la première ligne de
l’écran) apparaît en inversé pour indiquer ce
mode MACRO. Toutes les commandes réagissent
maintenant comme avant, l’éditeur mémorise
simplement tout ce que l’utilisateuzr fait.
Une pression de (PROGRA()END) termine la
mémorisation.

(MACRO) Exécute la séquence de touches mémorisée

La séquence de touches est mémorisée dans le buffer numéro 12. Il est possible
de travailler dans ce buffer avec la commande (SHOW()MACRO). chaque touche

mémorisée occupe une ligne du buffer 12, de la façon suivante:

par exemple

code de la touche
fonction en octal

000 101 correspond à. A

?
code de la touche principale
en octal

Le buffer 11 peut être utilisé comme n’importe quel autre buffer. Par exemple,
il est possible de le modifier (d’ajouter de nouvelles touches), de la sauver
sur disque, etc .

(CHANGE()MACRO) permet de compléter la mémorisation d’une
séquence de touches. Les nouvelles touches
tapées sur le clavier sont insérées à l’endroit
où est situé le curseur dans le buffer 11.
Après l’exécution d’une MACRO (MACRO), le
curseur est à. la fin du buffer 11.

(^?URSOR()MACRQ) Exécute répétivement la séquence de touches
mémorisées. La touche END permet de stopper
à la fin de l’exécution de la MACRO
fsHIFT^END^ permet de stopper n’importe quand

Si une touche fonction quelconque (CURSOR, COPY, KILL, ...) est pressée pendant
l’exécution, l’écran montre tout ce qui se passe. L’exécution est donc nettement

plus lente.

Numérisé par micromusee.ch
13

2,12 Entrées et sorties

Un éditeur de textes/programmes sans communication avec le monde extérieur est
inutilisable. Il est nécessaire de pouvoir sauver le texte édité sur une mémoire
de masse ou un périphérique, puis de récupérer ce texte lors d’une séance de
travail ultérieure.
Pour permettre le sauvetage du texte édité, la commande COPY DEFINE suivie
d’un nom de fichier aura l'effet désiré. Après l’éxécution de cette commande, la
totalité du buffer d’édition aura été recopiée sur le fichier, voire le
périphérique, mentionné.

< COPY I DEFINE)—| f ilenameTI

L'opération inverse, la lecture d'un fichier, se fait au moyen de la commande
ÇSHOW 0DEFINË~) suivie du nom du fichier à lire. Celui-ci est inséré à partir de

la position du pointeur jusqu'à concurence de la place disponible. En général,
on insère dans un buffer vide.

C SHOW $ DEFINE) | f ilenamej

Pour éditer un fichier plus long que la demi-place maximale disponible sur la
disquette, il faut éditer son fichier par tranches de dimensions inférieures au
maximum, le reste du texte résidant sur disque.

La commande f COPY() SHOW ^DEFINE") est une combinaison des deux commandes

précédentes. Chaque action de celle-ci écrit sur le disque le contenu du buffer
d’édition et, après avoir rendu la place ainsi libérée, amène la tranche
suivante du fichier en mémoire jusqu’à concurence des deux-tiers de la place
disponible. A la première action sur ÇcdPŸC3s^Q^-JDEFINE) , l’opérateur est

invité à taper le nom du fichier qu’il veut éditer. Deux cas se présentent
alors :
- le fichier n’existe pas, et l’éditeur le crée, chaque commande
C COPŸQSHOW ÆËFINE) écrivant et ajoutant le contenu du buffer sur le disque.

- le fichier existe, et l’éditeur amène la première tranche en mémoire.

Il est possible de compléter ces ordres par une réservation entre crochets.

Si le fichier est gros, (COPY()SHOW() DEFI NE.)—|FILE) charge le buffer courant

avec une partie du fichier, en laissant environ 10*000 caractères pour rajouter du

texte ou utiliser les autres buffers.
L’ordre permet de passer à la partie suivante du fichier,

en sauvant le début.

Résumé des ordres d’entrée-sortie:

Ç SHOW ÇPEFINEj—[filename

ÇcopY Çdefinej—[filename j

CSHOwÇcOPY ÇdËFÎW—)filename/|

REMARQUE: filename peut être un nom de fichier disque ou un nom de périphérique

(par exemple: SLP, SPR, SPP, ...).

Numérisé par micromusee.ch
- 14 -

2.1 ? Appel de l'éditeur et retour au système

Pour appeler 1 éditeur, on tape son nom suivi du nom du fichier à créer ou à
modifier. Par exemple EPRO somme &

Si le programme "somme.SR" existe, il est chargé par EPRO.
Dans le cas contraire, la question Crée SOMME.SR ? est posée, et l’utilisateur
doit confirmer en tapant 0.

Pour quitter l'éditeur la commande suivante rappelle le système d’exploitation.
Dans le cas ou l'éditeur est en train de traiter un fichier par tranches, cette
commande finira de recopier le fichier d'entrée sur le fichier de sortie.

ÇprograQ end) sortie de l’éditeur

Après cette commande l'utilisateur doit répondre à. une question; la première
ligne de l'écran apparaît comme suit;

M(ise à. jour, E(diteur, C(atastrophe

Si l'utilisateur répond ’M', l'éditeur met à jour la copie du fichier sur
disque. Dans notre exemple, il sauve le programme édité dans le buffer 0 sous le
nom "SOMME.SR", en détruisant l'ancienne version "SOMME.SR".

Si l'utilisateur répond 'C on quitte l'éditeur sans mettre à jour la copie sur
disque donc sans recopier les modifications éventuelles effectuées. La touche
'E' permet de retourner à. l'éditeur si la commande PROGRA-END a été donnée par
erreur.

2.14 Messages d'erreurs

En cas d'erreurs ou d'opérations spéciales, des messages apparaissent dans la
première ligne de l'écran. En voici leur signification:

Mémoire pleine signale que la mémoire texte est pleine; il faut sauver ou
détruire une partie des textes se trouvant dans les buffers.

Commande impossible est la réponse à une commande impossible et qui n'a pas été

exécutée.

Chaîne pas trouvée signifie que la chaîne à chercher n'a plus pu être trouvée.

Chaîne inexistante apparaît lors d’une recherche ou d'un changement lorsque la
chaîne de recherche n'a pas été définie

Macro incorrecte apparaît pendant l'exécution d'une macro lorsque le contenu du

buffer 11 n’est pas correct

Détruit l'ancien fichier XXX signale que l'on essaie de copier sur un fichier
qui existe déjà et demande s'il faut détruire l'ancienne version pour la
remplacer par la nouvelle. Une frappe sur les touches y ou 0 le permet; toute

autre touche fait avorter l'ordre.

Map.dr error et Sys.dr error signalent une panne hardware du système ou une
destruction d'une partie du programme. Si aucune erreur de manipulation ne s'est

produite, faire subir un test de fiabilité au système.

Numérisé par micromusee.ch
- 15 -

3. LES ASSEMBLEURS

Les assembleurs AS et SMILE ont un certain nombre de caractéristiques communes
décrites dans ce chapitre. Les commandes et exceptions spécifiques a ces
programmes sont données dans les sections particulières de ces programmes.

3.1 Le langage

CALM (Common Assembly Language for Microprocessors) est un ensemble de
notations pour assembleurs de microprocesseurs, développé a l’EPFL dès 1974.
Il est caractérisé par un nombre restreint de mnémoniques clairs pour exprimer
la fonction exécutée par 1’instruction, et par des opérandes dont la liste suit
le mnémonique, le mode d’adressage de chaque opérande étant décrit par une
expression indiquant avec précision le calcul effectué pour obtenir l’adresse.
Quelques signes spéciaux sont nécessaires pour préciser ces modes d’adressage.
T.e mode normal, pour lequel l’adresse est une adresse directe en mémoire, ne
nécessite aucun signe.
Par exemple, pour lire la valeur de la position 42500, appelée SAVPC, on écrit

LOAD A,SAVPC
Pour lire la position suivante, on peut écrire

LOAD A,SAVPC+1 (c’est l’assembleur qui fait l’addition).
Pour préciser que ce n’est pas le contenu de la position mémoire, mais la valeur
de l’adresse que l’on veut transférer, il faut écrire

LOAD HT.,# SAVPC
HL contient alors une adresse mémoire valable, que l’on peut utiliser pour
pointer et lire le contenu de cette position, en écrivant

LOAD A,(HL)
La parenthèse indique que ce n’est pas la valeur dans HL qui est transférée dans
A (il y aurait d’ailleurs absurdité car A est un registre 8 bits et ne peut pas
recevoir le mot de 16 bits contenu dans HL).
Des processeurs évolués (16 bits) admettent des expressions compliquées comme

T.OAD A,(HL)+DEPL /la valeur DEPL est ajoutée
;â la valeur dans HL pour
/obtenir l’adresse

LOAD A,(HL)+(R) /la valeur 8 bits dans B est
/ajoutée a la valeur dans HL
/pour obtenir l’adresse

Lorsque la position mémoire d’adresse donnée contient l’adresse de la valeur, et
non pas la valeur, on parle d’adressage indirect et on utilise le signe a) (at).

Par exemple
LOAD A^ADAD^/AT.

Peu de microprocesseurs actuels ont l’adressage indirect.
Avec les microprocesseurs 8 bits, une lettre simple est utilisée pour un
registre R bits: B, C. Une lettre double pour un registre 16 bits: BC, IX.
Les microprocesseurs 16 bits ont une structure plus riche qui
oblige a préciser la longueur du registre dans le code de l’instruction:

LOAD.B
LOAD.w

T.OAD. L

RO,ADVAL
RO,ADVAL

RO,ADVAL

charge les 8 bits à l’adresse ADVAL
charge les 16 bits aux adresses ADVAL

et ADVAL t 1
charge 32 bits (long word).

Numérisé par micromusee.ch
— 16 —

3.2 Définitions

Séparateur :

Un séparateur est à choix une suite non vide d'espaces (noté SPACE, BLANK ou),
de virgules ou de tabulateurs (TAB). Le tabulateur définit l'emplacement du
prochain caractère comme étant au moins une position plus loin et à une distance
multiple de 8 du premier caractère de la ligne. Dans la pratique, le choix entre
la virgule ou le tabulateur est fixé par le contexte. L’espace est rarement
utilisé comme séparateur.

Expression :

Une expression est formée de nombres, symboles, parenthèses et opérations
arithmétiques. Lorsque la valeur des symboles utilisés est connue, la valeur de
l’expression peut-être calculée, avec un résultat entier. Suite à une division,
la partie fractionnaire est tronquée, sans arrondi. La représentation en
mémoire est un nombre arithmétique dont la longueur dépend de l'instruction.
L’assembleur signale les dépassements de capacité lorsqu'il calcule une
expression. La définition est récursive étant donné que le facteur d'une
expression peut être une expression, avec les règles de parenthèses
habituelles.
Exemples : 612+(20-1)*40

(15+(200/(2*3)))*((2+3)-l)

Les opérations de groupage (parenthèses) et de puissance (A) ont la priorité sur
les opérations multiplicatives, fois (*), divise (/) et ET logique (&) qui elles
ont la priorité sur les opérations additives plus (+), moins (-) et OU logique
(!). Le complément à deux d’un terme s’obtient au moyen du moins unaire (-). Le
"non booléen” s’obtient au moyen du signe ”(par exemple: .vO vaut 377

a/1 vaut 0 ^2 vaut 0 */377 vaut 0).
Exemples : (2*3)+(4*5) est équivalent à 2*3+4*5,

mais (2+3)*(4+5) n’est pas égal à 2+3*4+5

Symboles et nombres:

Avec les notations de symboles et de nombres, on atteint le dernier niveau de
définitions. Les diagrammes de syntaxe ne contiennent plus de rectangles
impliquant de nouvelles définitions. Un symbole commence 1oujours par une
lettre, un point d’interrogation (?) ou un souligné (_) , peur le distinguer
d'un nombre. Le point isolé est un symbole particulier qui a v ileur du compteur
d’adresse pour la ligne considérée.

Exemples de symboles: TOTO
?DICAR
HELLO?

Exemples de nombres:

UN^SYMBOLE
123
177777
19.

Un nombre peut être une suite de chiffres dans la base courante ou une suite de
chiffres terminée par un point auquel cas le nombre sera analysé comme décimal.
Une dernière catégorie de nombres est le caractère ASCII précédé par une
apostrophe (par exemple. ’B vaut 102 octal). Dans ce dernier cas ce sera le
code du caractère qui sera considéré.

Exemples d'expressions complexes;
TRUC ! 2 *MACHIN I(5-BIDULE)!1
(100000-FINMEM)/400
(ADRESSE&(400-1))+OFFSET

Numérisé par micromusee.ch
- 17 -

3 * 3 Le fichier source

Un Liçllier—à—assembler est une suite de lignes contenant toute l’information
permettant de créer automatiquement un fichier binaire exécutable.
Le fichier est formé de lignes séparées par des retours de ligne notés CR
Une première analyse montre que certaines lignes contiennent les instructions
proprement dites (lignes d * instructions), d’autres sont des lignes
à station qui servent à. assigner une valeur à un symbole. D’autres lignes
sont des pseudQr^i ns,t r uetions servant de guide pour l’assembleur et définissant
des symboles et positions mémoire. Une ligne de fin termine le fichier. Elle
peut éventuellement être suivie par d’autres lignes, mais celles-ci seront
ignorées par l’assembleur.

3.3.1 La ligne d’instruction

Une ligne d’instruction est formée d’une étiquette, qui caractérise
l’emplacement mémoire, de 1 ’instruction proprement dite et d’un commentaire.
Une ligne d’instruction peut ne pas avoir d’étiquette ou avoir plusieurs
étiquettes, sur la même ligne ou non.
Exemples : instruction

LOOP: instruction
ETIQ1: ETIQ2: instr. ou ETIQ1: ou ETIQ1:

ETIQ2: instr. ETIQ2:
instr.

Etiquette :

Chaque étiquette est contituée d’un symbole, c’est-à-dire d'un mot représentant
un nombre (en l’occurence une adresse) suivi du signe Des séparateurs
peuvent être utiles de part et d’autre du symbole, mais ne sont pas nécessaires.
Certaines étiquettes sont classées spécialement et portent le nom d’étiquettes
locales. Elles sont caractérisées par le fait qu’elles comportent un ou deux
chiffres suivi du signe ’S’ et que leur domaine de validité n’existe qu’entre
deux étiquettes normales.
Exemples : LOOP:

10$: (étiquette locale)

Instruction :

Une instruction comporte au moins un code mnémotechnique ou mnémonique
caractérisant l’opération effectuée par le processeur. Un séparateur précède
généralement ce code et doit suivre si une condition de test et/ou des opérandes
précisent 1’opération.

Commentaires :

Un commentaire est caractérisé par le signe Un texte quelconque peut-être
écrit jusqu’à la fin de la ligne, celle-ci étant caractérisée par un retour à la
ligne. Les commentaires sont ignorés par l’assembleur.

3.3.2 La ligne d‘àffectation

Une affectation est caractérisée par le signe . Elle permet d’assigner une

valeur à un symbole.
Exemples,: BIDULE = 1

CHOSE = (BIDULE+5)*3

Numérisé par micromusee.ch
- 18 -

3.3.3 Les pseudo-instructions

On distingue les pseudo—instructions de commande, qui sont des instructions
générales pour l’assembleur (mise en pages, action sur compteur d’adresses,
choix de la base, etc.) et les pseudo—instructions de génération qui réservent
ou assignent des positions mémoire.

Pseudo-instructions de commande

.TITLE

donne un titre au programme. Ce titre est répété au
listing. Il est recommandé de n’employer cette pseudo
du programme afin de faciliter la gestion de la table
Exemple: .TITLE DEMONSTRATION /commence une

début de chaque page du
que comme première ligne
des matières.
nouvelle page

.SBTTL
permet de nommer des parties de programme en leur donnant un sous-titre qui sera
imprimé au début de chaque page, à coté du titre du programme. De plus, une
définition de sous-titre éjecte une page du listing afin de débuter le nouveau
chapitre au début d’une page.

. LOC
initialise le compteur d’adresses courant à la valeur suivant la pseudô. Si
cette pseudo n’est pas définie au début du listing, SMILE prendra 100000 comme
valeur par défaut, tandis que AS prendra 0 comme valeur part défaut.

Il est conseillé de ne pas utiliser la pseudo-instruction .LOC avec SMILE lorsque
l’on veut exécuter le programme assemblé avec (PR0GRA() V). Cette valeur 104000
risque d’être changée dans les révisions ultérieures.

.ALIGN
permet d’aligner le PC de l’assembleur à une valeur à choix (donc par exemple de
faire commencer des parties de programmes à des adresses rondes)
Exemple: .ALIGN 400

TABLE :

.PC
permet l’utilisation de plusieurs compteurs d’adresses. La valeur qui suit la
pseudo est le numéro du compteur et doit être comprise entre 0 et 7 inclus.
Exemple : ROM = 0

RAM = 1
.PC ROM
.LOC 0
.PC .RAM
.LOC 100000

’ /variables
. PC ROM
/programme

.PC RAM
/une variable supplémentaire
.PC ROM
/suite du programme

.END
signale à l’assembleur la fin du fichier source. Les lignes suivantes sont
ignorées. La valeur qui suit la pseudo est l’adresse à laquelle le programme
doit commencer son exécution lors de son chargement. Si aucune valeur n’est
spécifiée, ce programme ne pourra pas être chargé, mais sera quand même

assemblé.

.PAGE
éjecte une page de listing à un endroit quelconque du programme afin d’en

améliorer la lisibilité.

Numérisé par micromusee.ch

19

.LINES
permet de choisir le nombre de lignes par page. .LINES 0 (zéro) donnera un
listing continu.

.LIST
permet de n’imprimer que certaines parties d'un programme suivant la valeur de
l'expression booléenne qui suit.
Exemple: .LIST 0 supprime le listing

.LIST autorise le listing

.PROC

permet de générer du code pour un processeur au choix, pour autant que le
fichier de paramètres soit disponible sur la mémoire de masse.
Exemple : .PROC Z80

. REF

déclare que le fichier dont le nom suit la pseudo doit être pris comme fichier
de définition (évite de surcharger le fichier source de définitions et autres
affectations). L’extension réservée à ces fichiers de définition est .ST
Exemple : SM6 charge le fichier de définition SM6.ST

.RADIX (ou .RDX)
définit la base du système de numération utilisée par l'assembleur. La valeur
qui suit la pseudo est analysée dans la base courante, donc dans l'ancienne base;
Pour éviter toute confusion, il est conseillé de donner la valeur de la nouvelle
base au moyen d’un nombre décimal (terminé par un point). La base d'entrée par
défaut est la base 8 (octal).
Exemple: .RADIX 16.

passe au système hexadécimal

.OCT, .HEX
définissent la base de sortie. C'est dans cette base que sera imprimé le
listing. La base de sortie par défaut est l’octal.

.IF
assemblage conditionnel si la valeur de l'expression booléenne qui suit la

pseudo est différente de zéro

.ENDIF
signale la fin d’une partie assemblée conditionnellement.

.ELSE
située entre un .IF et un .ENDIF, cette pseudo a pour effet d’inverser la

condition calculée au .IF précédent.
Exemple: LOAD A,TRUC

.IF
SUB
.ELSE
ADD
.ENDIF
LOAD
etc.

SMAKY
A,#2

A, #5

C,A

.INS
permet d'insérer un source dans un programme. Ce source sera assemblé de la même
manière que le programme maître, sauf les erreurs éventuelles qui sont

simplement affichées sur l’écran, sans être copiées dans le nouveau source.

Exemple : .INS SYS.RF
a même effet final que .REF SM6

mais est plus lent

Numérisé par micromusee.ch

— 20 —

Pseudos de génération

.BLKB
réserve en mémoire le nombre de bytes indiqué.
Cette valeur doit être calculable lors de la première passe de l’assembleur.
Exemple: .BLKB 64.

réserve 64 bytes

. BLKW

réserve en mémoire le nombre de mots indiqué

.BYTE ou .B

génère du code pour toutes les valeurs qui suivent sous forme de bytes
consécutifs
Exemples: .RADIX 16

.BYTE 123

.BYTE 99.

.BYTE ’A

.BYTE 0A3 ; comme les nombres doivent
; commencer par un chiffre,
;on a ajouté un 0 (zéro) devant
; le nombre hexa A3

Dans ce cas, on peut écrire plus simplement:
.B 123,99.,*A,0AB
(virgule, espace ou tab pour séparer)

.WORD ou .W
génère du code pour toutes les valeurs qui suivent sous forme de mots
consécutifs.
Exemple: .WORD 34567

Il est possible de générer des bytes et des mots mélangés en déclarant une
pseudo du type .BWBBW qui, dans ce cas générera un byte suivi d’un mot, de deux
bytes et d’un mot et ceci cycliquement.

.ASCII
mémorise dans des paires de positions mémoire successives les codes ASCII de
tous les caractères entre guillemets
Exemple: .ASCII "BONJOUR”

.ASCII "texte”

.ASCIZ
comme ASCII, mais ajoute un byte nul après les codes ASCII des caractères (les
codes spéciaux â insérer dans la chaîne sont mis entre parenthèses pointues.

Exemple: .ASCIZ "texte de <15><12> lignes”
.ASCIZ "signée’”> et signée'<>”

Numérisé par micromusee.ch
21 -

3.4 Le travail de 1*assembleur

L’assembleur transforme le fichier source en code binaire conformément aux
pseudo-instructions de commande et a l’aide de la table de description du
processeur. L’assembleur travaille en deux passes:

Lors de la première passe, il se contente de collectionner tous les symboles en
leur attribuant une,valeur si celle-ci est définie. Il contrôle également la
syntaxe des différentes instructions et enlève les anciens messages d’erreurs
qui subsistent.

Lors de la seconde passe, l’assembleur génère le code binaire dans le fichier
spécifié. Il fournit également un listing de l’assemblage si celui-ci a été
demandé. Le travail le plus caché est l’insertion des messages signalant les
erreurs dans le fichier source directement. A la fin de la seconde passe,
l’assembleur adjoint une cross-référence map au fichier listing permettant de
retrouver plus facilement les différents symboles dans le programme. Le travail
terminé, il ne reste plus qu’à signaler le nombre d’erreurs à l’utilisateur
(auquel cas le fichier binaire est automatiquement détruit) ou que l’assemblage
a été réalisé sans découverte d’erreur. Ceci ne veut pas dire que le programme
assemblé fonctionne de façon satisfaisante !

3.5 Le fichier objet

Le fichier objet généré par l’assembleur est directement une image mémoire du
fichier tel qu’il sera en mémoire lors de son exécution.

L’avantage de cette forme de représentation réside dans un chargement très
rapide, aucune conversion de code n’ayant lieu

Le désavantage est la place occupée sur disque par des programmes occupant les
deux extrémités de la mémoire. Ces derniers n'étant pas les plus courants,
l’utilisateur s’accomodera de cette petite faiblesse.

Numérisé par micromusee.ch
- 22 -

4. EPRO; l'éditeur de programmes

Pour éditer le programme source, on utilise l’éditeur EPRO
Cet éditeur permet de travailler avec des fichiers ayant l’extension .SR par
défaut. Lorsque l'éditeur est chargé, la ligne supérieure de l’écran donne les
informations suivantes:

EPRO "4-7 0/1345/38767 0=TEST7SR " 8Î/05/2f‘16:10:25
---- ...A-----------------?-----.............. f.

Les caractéristiques de cet éditeur ont été décrites au début de la notice. On
se contentera ici de donner des indications sur les diverses manières de charger
un programme source, de le corriger et de le sauver.

EDITION D’UN PROGRAMME

Il y a deux façons d'éditer un programme, suivant sa grandeur:

1) Edition d'un programme court

On entend par programme court un programme qui peut être contenu entièrement
dans un buffer d’EPRO.

Depuis le CLI, taper

«EPRoV qui charge l’éditeur

Il est alors possible d’éditer un nouveau programme.

Pour lire un ancien- programme depuis la disquette, taper

(SHOW () DEFI NE nom V J

Pendant l'édition du programme, il est prudent de faire régulièrement des copies
de sécurité, en tapant par exemple:

Lorsqu * un
(COPY () DEFINE

ancien fichier T.SR existe déjà sur la disquette, il faut répondre

(O) à la question "Détruit l'ancien fichier T ?"

Lorsque l'édition est terminée, on donne l'ordre

(COPY () DEFINE3—|nomX

pour sauver le programme sur la disquette. Si le fichier "nom.SR" existe déjà
et qu'on désire le remplacer par la nouvelle version, on tape (TF) en réponse à

la question "Détruit l'ancien fichier nom.SR ?".

L'ordre permet de quitter EPRO.
Si (PRÔGRAfjENDJ est tapé par erreur, il suffit de presser sur E pour retourner

à l'éditeur.

Pour retourner au CLI, il faut encore presser sur GO*

Numérisé par micromusee.ch
23

2) Edition d’un long programme
Un long programme est un programme qui ne peut pas être contenu en entier dans
le buffer d’EPRO; dans ce cas on parlera de pages, une page étant le contenu
d’un buffer d’EPRO.

ÇÊPRO) charge l'éditeur

(COPY () SHOW () DEFINE y-4nom,'. lit la première page du programme
”nom.SR” dans un buffer d’EPRO

Il est alors possible d’éditer la première page du programme.

CÇPPY () SHOW () DEFINE)

écrit la page courante sur la disquette, puis lit la page suivante.

(” PROGRA () END ') permet de quitter d’éditeur.

retourne à l’éditeur
recopie la totalité du programme sur le disque
(même les pages que l’on n’aurait pas lues)
retourne au CLI sans mettre à jour le programme

Remarque :
La commande ÇgPRO _>l nom g | est équivalente à la séquence

EPRO^

(COPY () SHOW
A

) DEFINE >

De plus il est possible d’éditer des programmes courts comme des longs
programmes (le contraire n’étant évidemment pas vrai 1)

La commande EPRO nom nouveau/N permet de créer le fichier nouveau.SR à
partir du fichier nom.SR. Après avoir fait quelques modifications puis
(PROGRA () END) , le fichier nouveau.SR contiendra donc les modifications,
tandis que le fichier nom.SR ne sera pas changé.
Cette commande peut être utile pour éditer de très long fichier en mettant le
fichier à éditer sur DXO et en créant le nouveau fichier sur DX1 avec la
commande EPRO nom DX1:nouveau/N

EEEEE PPPP RRRR 000
E P P R R O 0
EEE PPPP RRRR O 0
E P R R 0 0
EEEEE P RR 000

Majuscules minuscules.

Ml nus eu 1 es nia J us eu les •

Aide à l’utilisateur.

Affiche les CRs, TABs .

Supprime les CRs , TABs.

Détruit un fichier.

Déterre ou stoppe
1 ' enreg is trenent d’une

macro .

—(flèches () CHANGE I)

(T PROGRA)---

—(FLECHES () CHANGE I)

---------------- (n |)

(I SHOW ~)---

---------------- (CR, TAB~T)

----------------(CR, T AB I)

(I KILL)---
I

---file------- (DEFI NE î)

< I CHANGE)---

----------------(MACRO ~)
J__________
(I PROGRA)---

-------------------- (ABC..) —

-------------------- c BS------)--

-------------------- (----DEL ~)

-------------------- (Esc >--

-------------------- (MACRO ~)---

(I MACRO)-------------
J_____________________

(I CTRL () rifeches)--

—(CURSOR I) (I flèches

(I KILL ?)
J________

(I O. .9

(I MACRO 1

(I flèches)

te 1 * éd i teur. (END () PROGRA)---

—(SHOW (I) DEFINE)_____________
______ |______________________

— (COPY (!) SHOW () DEFINE) —

— (IDEFINE)-cl — (DEFINE)-l—c2-

— (CHANGE I)--->---- I

(I SEARCH (I) flèches)•

— (SEARCE I)-- >---- 1

Numérisé par micromusee.ch
- 25 -

5. ETEX: l'éditeur de textes

Ce programme est prévu pour l'édition de textes au kilomètre, texte qui sera mis
en page par d’autres programmes ou par des imprimantes intelligentes.

Les principales différences entre ETEX et EPRO sont:

1) Lorsque l’on a tapé une ligne de 64 caractères:

Avec EPRO: si l'on continue à taper (sans presser RETURN), les caractères
suivants sont mémorisés, mais restent invisibles pour l'utilisateur. Il y a
toutefois une possibilité de les visualiser en déplaçant latéralement l'écran
au moyen de l’ordre (SHOW) combiné avec une déplacement horizontal (S, D, F
ou G).

Après le RETURN, un "I" signale que la ligne déborde.

Avec ETEX: le changement de ligne se fait automatiquement. Les mots de fin de
ligne qui sont trop longs sont reportés à. la ligne suivante (sans être coupés).

2) Déplacements:

Les déplacements avec la touche CURSOR n'ont pas le même effet.

Par exemple :
Avec EPRO, (CURSOR () C
Avec ETEX, (CURSOR () C ~)

. se

descend d'une ligne,
se déplace d'une phrase. c'est à dire
positionne sur le prochain point.

3) (PRQGRÂ() P) permet de voir le texte comme il serait avec EPRO,

c'est-à-dire que chaque ligne de l'écran correspond à un paragraphe. Dans ce
mode, les déplacements sont identiques à ceux d'EPRO,
déplacements horizontaux (SHOW() flèches),
(PROGRÂ(T~) permet de revenir à l'affichage en mode ETEX.

y compris les

4) Extensions prises par défaut:

Avec EPRO:
Avec ETEX:

»

Majuscules minuscules.

Minuscules majuscules.

Affiche en coupant les
mo ts .

Af f iche une 1 igné par
paragraphe.

Aide à 1’utilisa tour.

Affiche les CRs, TABs.

Supprime les CRs, TABs .

Détruit un fichier.

Démarre ou stoppe
l’enregistrement d’une

macro.

Quitte l’éditeur.

EEEEE EEEEE
E
EEEE
E
EEEEE

X X
X X
X

X X
X X

fiée lies () CHANGE I)

FLECHES () CHANGE I)

(I PROGRA

II

(I SHOW

(CR TAB I)

(CR, TAB I)

(I KILL

DEFINÉ I)

(I CHANGE)

MACRO

(I PROGRA

END (3 PROGRA)

Pour forcer un saut de page: <•
(SHIFT-f) RETURNj

--------------------------- (abc..)—
--------------------(BS_____)---

-------------------- (DEL)---

-------------------- (ESC j----

-------------------- (— MACRO) —

(I MACRO ~')_____________
I___________________

(~î CTRL () flèches)---
7

—(CURSOR I> (I flèches)---

(I KILL I)

(I 0..9)--

— (SHOW (I) 0..9)-------------

(I MACRO)-------------

(I f léchëïï")-------------

(COPY I) (I fl èches)--

(KILL I)

।---->---- (। Ctrl () Q, , ç
J__________
(T 0..9___)-------------

— (SHOW (I) DEF INÈ")_____________
* ___________

—(COPY (I) SHOW () DEFINE)—

— (IDEFINE)—c 1 — (DEFINE)- I —c2-

— (CHANGE T)-- >---- I

(I SEARCH (I) flèches)•

— (SEARCH"")-- >---- I

Numérisé par micromusee.ch

- 27

L éditeur de texte est complété par un prograjnme de justification: JUSTIF.

UTILISATION DE JUSTIF.SM

Ce programae permeti â partir d’un texte tapé au Km avec ETEX> de le Mettre en page en
choisissant la largeur de la colonne et le type de Justification.

On appelle le programme en tapant!

JUSTIF ü.

Puis op répond aux questions ^ui apparaissent sur l’écran.

On indique ainsi successivement:

. Le nom du texte À traiter avec son extension

. Le nom du fichier de sortie (un noa de fichier dissue
ou SL P pour obtenir directement une copie papier)

. La largeur de la colonne (en nombre de caractères)

. Le type de justification.

L (left)
R (right)
C (tenter)
fi (aligned)

correspond à une justification à gauche seulement
correspond à une Justification J droite seulement
centre chaque ligne (sans Justification)
Justifie des deux côtés

(Attention: ces comaandes doivent être en majuscules)

Dans la version actuelle ce JUSTIF les tabulateurs sont considérés cornue des espaces

simples.

Numérisé par micromusee.ch
- 28 -

6. AS; l'assembleur paramétrisable

Prendre une disquette contenant les fichiers:

EPRO.SM
SMS.ST ou FLO.ST
AS. SM
Z90.SM
XREF.SM

(éditeur de programmes)
(symbols prédéfinis)
(assembleur)
(module pour le processeur Z80)
(générateur de cross-références)

Pour éda.ter le programme source, on utilise l’éditeur EPRO .

On indique au début du programme les pseudos utilisées, soit en général:

.TITLE ESSAI

.PROC Z80

.REF SMS

. LOC 100000

Pour assembler le programme ESSAI.SR, les ordres suivants peuvent être donnés:

AS ESSAI assemble le fichier ESSAI.SR et génère un binaire ESSAI.SM .
S'il y a eu une ou plusieurs erreurs d'assemblage, ESSAI.SR
contient les messages d'erreurs, et le fichier ESSAI.SM
n’existe pas.

AS ESSAI/L assemble le fichier ESSAI.SR et génère un binaire ESSAI.SM et un
listing ESSAI.LS .

AS ESSAI TOTO/L assemble le fichier ESSAI.SR et génère un binaire ESSAI.SM et un
listing TOTO.LS .

AS ESSAI/L/X assemble le fichier ESSAI.SR et génère un binaire ESSAI.SM, un
listing ESSAI.LS et une cross-référence ESSAI.XR .
Les lignes dans le fichier listing seront numérotées pour
permettre une recherche à l’aide de la cross-référence.

AS ESSAI TOTO/B assemble le fichier ESSAI.SR et génère un binaire TOTO.SM .

AS ESSAI/S assemble le fichier ESSAI.SR et génère un binaire ESSAI.SM et
une table des symbols ESSAI.ST .
Cette table des symbols pourra être utilisée à l'aide de la
pseudo-instruction .REF ESSAI .

AS ESSAI/E assemble le fichier ESSAI.SR et génère un binaire ESSAI.SM et un
fichier contenant les messages d'erreurs ESSAI.ER .
ESSAI.ER contient uniquement les erreurs rencontrés dans
les .INS . Les autres erreurs sont dans le fichier ESSAI.SR .

AS ESSAI/M assemble le fichier ESSAI.SR et
fichier ESSAI.MS contenant les
normalement sur l’écran.

génère un binaire ESSAI.SM et un
messages qui apparaissent

AS ESSAI TOTO/N assemble le fichier ESSAI.SR et génère un binaire ESSAI.SM et un
nouveau fichier source TOTO.SR .
S'il y a une ou plusieurs erreurs, elles seront donc insérées

dans le fichier TOTO.SR .

Numérisé par micromusee.ch
- 29 -

Exemple d’ordre complexe:
AS ESSAI/L TOTO/B/X TITI/E TATA/S
Assemble le
- ESSAI.SR
- ESSAI.LS
- TOTO.SM
- TOTO.XR

fichier ESSAI.SR et génère les fichiers:
nouveau source avec les erreurs éventuelles
listing
binaire (s’il n’y a pas eu d’erreurs)
cross-référence

- TITI.ER erreurs dans les .INS
- TATA.ST table des symbols

RESUME:

contenu du fichierswitch extension

/B

/X
/S
/E
/M
/N

! \ SM
! .LS

I .ST
I .ER
I .MS
! .SR

! binaire
l listing (*)
I cross-référence (*)
! table des symbols (pour un .REF)
I erreurs dans les .INS (*)
! message de l'écran (*)
! nouveau source (*)

Les (») indiquent des fichiers qui peuvent être imprimés ou édités.

EXEMPLE:

Soit le source incorrect ESSAIKO.SR suivant:

.TITLE ESSAI

.PROC Z80

.REF SM6

.LOC 100000

ESSAI: LOAD C,#LINES
.W ?IDIS

LOOP; .W ?GET
.W ?DITEX
.W 7RETURN
JUMP .LOOP
.END ESSAI

Si on donne l'ordre AS ESSAIKO
on créera sur la disquette, au lieu du fichier exécutable ESSAIKO.SM, un nouveau
source ESSAIKO.SR où les erreurs sont mises en évidence.

Numérisé par micromusee.ch
- 30 —

Nous visualisons ce source avec EPRO en donnant l’ordre EPRO ESSAIKO et nous
voyons maintenant sur l’écran:

.TITLE ESSAI

.PROC Z80

.REF SM6

.LOC 100000

ESSAI : LOAD C,#LINES
.W ÎIDIS

LOOP: .W ?GET
Undefined Symbol

.W ÎDITEX
.W ÎRETURN
JUMP LOOP
.END ESSAI

Nous corrigeons la faute en remplaçant ?GET par ÎGETLINE (le programme ôtera
lui-même le message Undefined symbol"), nous sauvons le fichier corrigé sous
le nom ESSAI.SR et redonnons l’ordre AS ESSAI .

Cette fois l’assemblage se fait correctement et le fichier exécutable ESSAI.SM
est créé sur la disquette.

Pour créer
en plus du
visualiser

également un fichier
binaire ESSAI.SM,
en donnant l’ordre

listing, on donne l’ordre AS ESSAI/L qui crée,
le fichier listing ESSAI.LS, que nous pouvons
EPRO ESSAI.LS .

30/01/81
01-01

1
!

12:17:43 TABLE OF CONTENTS

01 ESSAI

30/01/81 12:17:43 ESSAI

01-01

.TITLE ESSAI

.PROC Z80

.REF SM6

100000 .LOC 100000

100000 016 024 ESSAI:
100002 347 126
100004 347 005 LOOP:
100006 347 006
100010 347 043
100012 030 370

100000

LOAD C,#LINES
.W ÎIDIS
.W ÎGETLINE
. W ÎDITEX
.W ÎRETURN
JUMP LOOP
.END ESSAI

000009 references
Source file 000011 usefull Unes long

Binary file 000014 bytes long
Assembly time: 0001 seconds 0660 lines/min

M » *

Numérisé par micromusee.ch
31

Remarques ;

Les noms qui suivent l’ordre AS peuvent être aussi des noms de périphériques
ou de fichiers sur une autre unité de disquette.
AS ESSAI SLP/L créera un listing du programme

Pour assembler les très longs programmes, par exemple le BASIC, on réserve une
disquette pour le source, et l’autre pour le programme assembleur. On donne
alors l’ordre: AS DX1:BASICI573?

Pour pouvoir insérer les erreurs dans le source, l’assembleur utilise un fichier
temporaire ayant le même nom que le fichier source, mais avec l’extension .SC .
Les étapes successives sont:

1) destruction du fichier .SC
2) lecture ligne par ligne du fichier source .SR
3) écriture ligne par ligne dans le fichier .SC avec en plus

l’écriture des erreurs éventuelles
4) lorsque l’assemblage est terminé, destruction du fichier .SR
5) changement de nom du fichier .SC en fichier .SR

Pour pouvoir générer la cross-référence, l’assembleur génère un fichier
intermédiaire avec l'extension .XR ainsi qu’une table des symboles avec
l’extension .ST . Lorsque l’assembleur a terminé ses deux passes, il démarre le
programme XFER.SM qui lit les fichiers .XR et .ST et qui crée une
cross-référence imprimable avec l’extension .XR .
Si l’assembleur n’a pas suffisamment de place sur la disquette pour générer le
fichier intermédiaire .XR, le message ”Xref map suppressed” apparait sur
l’écran, puis l’assembleur continue normalement son travail.

Attention: l’assembleur utilise beaucoup de fichiers. La disquette doit pouvoir
les contenir tous J

Pour chercher les erreurs, on charge le source avec EPRO, et on donne l’ordre

(SEARCH () A).
On corrige les instructions erronées seulement; l’assembleur ôte lui-même les
messages d’erreur lors de la prochaine passe.

Numérisé par micromusee.ch
32

7. SMTLE: 1 *éditeur-assembleur

SMILh permet de créer et de tester rapidement de petits programmes écrits en
langage d’assemblage CALM pour processeur Z80.

Création d’un programme

1) Appeler 1’éditeur-assembleur en tapant
2) Taper le programme

4)

SMTLE

Sauver temporairement le programme
en donnant l’ordre
Sauver en donnant l’ordre
Quitter l’éditeur par

toutes les 10 minutes
(COP Y () DEFI NE HTM
CQPY () DEFINE~~)^[nom

C~PROGRA 7) END) SU i.vi de (0)

Modification d’un programme
1) Tl y a deux façons de charger un programme depuis la disquette

(SHOW () DEFINE nom il

3) Le sauver en donnant dans tous les cas l’ordre
(CQPY () PEFTWE~Wnom^l

4) Quitter l'éditeur par (pfogrr () END) suivi de

Assemblage d’un programme
Donner l’ordre (PRQGRA () Z)
S’il y a des erreurs, le programme insérera des messages d’erreur dans le source

Recherche des erreurs
Donner l’ordre ÇSÈARCH ()

Exécution d’un programme
Avant d’exécuter le programme s’assurer que le source ont sauvé.
Donner l’ordre (PRÔCRA () V)

Si nécessaire, presser sur FREAK pour interrompre et sur SPACE pour afficher
les rpqirtrnn. puis enoore une fois sur SPACE pour revenir dans SMTLE.

Sauvetage du binaire
Donner 1’ordre
puis le nom du programme

n_ b_
lorsque l’écran montre FTLE ;

f^PROGRA () L__)
Fichi er 1i sii no
Donner 1’ordre
puis lo nom du programme lorsque l’écran montre FTLE

Transmission du binaire format PDP11 par STMSER
Assembler, puis donner l’ordre (PRÔGRA () T)

Passage au moniteur
Donner 1'ordre (PROGRA f J Q)

Retour a SMTLE en pressant S.

Donner l’ordre pCILLÇ)CURS0R() B)_______ _
pour détruire le binaire en mémoire (créé par (PRQGRA() Z)). Cela permet de

gagner de la place pour éditer»

-------------------- (___ ABC,,)--

As s c mb 1 e .

Crée un fichier
b 1 nu i rc .

Créc un fi ch i ev
1 1H t i 11^* .

Transmet le Binaire
en format PDF.

Moni leur.

Cont inné après un TRAP*

Majuscules minuscules.

Minuscules majuscules.

Aide ù 1 *uli1isuteur•

Affiche les registres.

Affiche les CRs , TABs .

Suppr imc TABs.

Détru i t un

Quitte l’éditeur.

M M
MM MM
M M M
M M
M H

EEEEE
E
EEEE
E
EEEEE

DEL

----------------(__ ; p

----------------(p f)
•• «M» «

----------------(E t)
I

« M • K ** • • K* M •••---------------- (JP__ I)
_________ I

---------------- (• • - O I)
J________

(I PROGRA
__ L

----------------(’ y |)
I

• * • • • • MW O^M» KM----------------(c I)
________ _______ ___ ___ L

— (flèches (’) CHANGE I)
_ __ ____ l

— (FLECHES (') "'CHANCE I)

-(H___ i)
l_ ._____

(~i SHOW)--

-(R T)
____L

-< CR* tab i)
(CR, TAB J)

(I KILL)---
__________ £

(DEFIME I)

----------------(~ËND () PROGRA)---

—------------------------------ - -------------A «MM K- «- «K K • -

(] CTRI- () flèches) —

«^M« «B 4M M •• MKMW ti4^ •• M» «MM ««■

— (CORSOR I> (I flèches__) —
J_________ l

(I KILL I)

(I 0. .9) —

—(snwrf) o. . 9 >------------

j_______________
(I f1èchea)------------

— (COPY T) (’l f lècheS) —
* MM M» KMW * • « • *«

(I KILL I)
!--->--- (! CTRL (T~0.~.~

O 0..9)------------

— (SHOW <I) DEFINE :)------------
—(COPY~h

—-(IDEFINE) —c 1—(DEF IRE)- I —e^

(CHANGE I)-- >----

(I SËARCII (

(SEARCH l>

) flèches

