
INTRODUCTION A LA PROGRAMMATION AVEC SMILE

Octobre 1980

System SS)

����������	������	���

���Mis � disposition par Jean-Daniel Nicoud
Mars 2024

INTRODUCTION A LA PROGRAMMATION DU SYSTEME

AVEC SMILE Octobre 1980

Le but de cette notice est d'apprendre à programmer en langage d'assemblage
et de se familiariser aux caractéristiques des microprocesseurs, en particulier
du Z80 utilisé comme processeur du SMAKY6. Elle contient des exemples qui
illustrent les explications, et des exercices qui sont à exécuter directe­
ment sur un SMAKY.

Un SMAKY avec un système 1.6 ou.ultérieur est nécessaire.
La variante SMILE 2.5 est utilisable, mais les révisions 3.4 et ultérieures sont
préférables.

1ère partie: INTRODUCTION GENERALE

1. ARCHITECTURE

Le SMAKY6 contient, en plus du processeur, une mémoire morte (ROM) contenant un
programme de dialogue initial et de nombreux sous-programmes facilitant la pro­
grammation. Des interfaces permettent de lire un clavier, d'afficher des carac­
tères sur un écran et de communiquer avec des périphériques extérieurs (COBUS,
lecteur, perforateur, etc.). La mémoire vive est chargée par les programmes
utilisateur.

Pour pouvoir faire les exemples et exercices qui suivent, il faut tout d'abord
charger SMILE dans un SMAKY; il faut procéder de différantes façons selon la
configuration à disposition.

1) A l'EPFL, après un RESET ou un LOGOUT, taper [Clé d'accès^ puis SMILEj

La clé d'accès est un nom, un surnom (connu du système) ou un nom de

répertoire.

2) Sur un SMAKY avec floppy, taper tSMILEx. après avoir bootstrapé.

����������	������	���

���

2. SMILE

Le programme SMILE, unefois chargé en mémoire, permet d'éditer, d'assembler et de
démarrer des programmes. Dans le mode d'édition, le clavier-écran se comporte
comme une machine à écrire, avec des possibilités supplémentaires de correction
grâce aux touches fonction supplémentaires (Maintenir la touche CAPS LOCK en­
foncée pour taper les programmes). Par exemple, pour déplacer le curseur dans un
texte tapé sur l'écran, on maintient CURSOR pressé et on donne la direction et
l'amplitude du déplacement avec l'une de 10 touches repérées par des flèches.

BREAK

TA B

avance le pointeur d'un caractère

recule le pointeur d'un caractère

descend le pointeur d'une ligne

remonte’ le curseur d'une ligne

descend le pointeur de 4 lignes

remonte le pointeur de 4 lignes

avance le pointeur d'un mot
«

recule le pointeur d'un mot

place ’e pointeur à la fin du texte

□ lace le ooint'’ur au début du texte I

EXERCICE 2.1 TapeA -Ce modèfe cé-cont/ie.
U-tZZZwi ta touche TAB pouA
avanccA d'une cotonne,
ta touche BS. pouA e^aceA
te caAacteAe précédent,
ta touche DEL pouA e^aceA
te caAactèae ie trouvant
4 oua te CUAACUA

PROGRA

SKFT

SHOW

ENO

RETURN

FCNT

- - -,

SEARCH

OEFINE

CHANGE

CURSOR

CURSOR

CURSOR !

CURSOR

CURSOR

EXERCICE D'EDITION

A = 2
13 = 3
C = 4

(ïapLT CÂ) fTÂB) (p) (SPÂrî.) C?) IRE i lÏRNb.J

����������	������	���

���

3. MODELE SIMPLIFIE DU Z80

Le SMAKY6 comporte l'équivalent de 300000 transistors; nous nous contenterons
donc en première étape d'un modèle très simplifié, ce qui est possible grâce
aux sous-programmes (appels) contenus dans la ROM.

Le modèle simplifié du processeur Z80 est le suivant: il a trois registres A, B
et C de 8 bits, 2 registres DE et HL de 16 bits (considérés parfois comme
4 registres D E H L de 8 bits), et un registre de fanions (flags) F, contenant
les indicateurs C (carry), Z(equal, equal to zéro), S(sign) et V(arithmetic
overflow).

■ ' Registre
—

A

ÛE

HL

53000:
Pile (en mémoire)

La mémoire contient le programme et les données, qui sont soit des octets (byte),
soit des sedets (word). Une zone mémoire particulière joue le rôle d'une pile,
sur laquelle on peut "poser" ou "pousser" (push) le contenu d'une paire de
registres, pour le reprendre (pop) plus tard.

Quelques instructions typiques sont:

LOAD

LOAD

LOAD

A,B

A,# 5

A,5

chargement de A

chargement de A

chargement de A
mémoire (cette

avec le contenu

avec la valeur

avec la valeur
adresse est en

de B (ne modifie pas B)

5 (octale)

contenue dans la 5e cellule
ROM; elle contient 17)

AOD A,C * addition de A et C, résultat dans A.
Carry mis à 1 si dépassement (nombres logiques) (CS)
Z mis à 1 si le résultat est nul (EQ)
S mis à 1 si le signe (bit de poids fort) est à 1 (SS)

’ V mis à 1 si dépassement (nombres arithmétiques) (VS)

C07ÎP A,# 2 compare le contenu de A et la valeur 2.
Z mis à 1 si A=2 (EQ)
C mis à 1 si A<2 (LO) (A contient le nombre logique)
S mis a 1 si A<2 (SS) (A contient un nombre arithmétique)

A„ , •
RFC A’ pg]-|~S |-j rotation de A a travers le Carry (modifie'C,Z,S)

INC A ajoute 1 à A (modifie C,Z,S)

JUMP NEXT saut à l'instruction d'étiquette NEXT

JUMP.EQ LOOP

DECJ,NE B,LOOP

saut à l’instruction d'étiquette LOOP si le fanion Z vaut 1
(résultat précédent égal à

est équivalent à
DEC
J UMP,NE

zéro ou comparaison égale)
B
LOOP

Décompte 13 et saute à LOOP si le résultat est Z (1 (Non Equal)
continue si 13=0

3

����������	������	���

���

PUSH

POP

AF

BC

sauvetage des 2 registres A et F sur la pile

transfert du sommet de la pile dans BC

EX HL,DE échange des contenus des registres HL et DE

4. SRUCTURE D'UN PROGRAMME

Les instructions seront alignées dans un programme dont la structure
générale est la suivante:

Exemple 4.1

; boucle
DEB:
DEB2:

. TITLE

.PROC

. REF
infinie
LOAD
ADD
INC
JUMP

TEST
ZSO
SM 6

A,# 1
A,A
A
DEB2

;KP 29.5.80

;A contient successivement 1,
; 2,3,,6,7,...,176,177,376,377,376,377, etc
;mais on ne voit pas son contenu

• * •

*

.END DEB

5. UTILISATION DE L'ECRAN ET DU CLAVIER

L'écran est une grille de 20.x 64. caractères que l'on doit initialiser
et sur laquelle on peut déposer des caractères de façon Séquentielle ou
aléatoire

XX

n lignes

4

����������	������	���

���

L'appel .W 7DICAR
préparé dans A.

permet d'afficher le caractère dont le code a été

Par exemple, pour afficher l'alphabet sur la première ligne de l'écran,
le programme est le suivant:

Exemple 5.1.

.TITLE

.PROC

.REF

ALPHA
280
SMS

: affiche l’alphabet

NBLIGNES= 10. ;10. lignes pour la fenêtre d'affichage

ALPHA: LOAD

ALP2 :

.W
LOAD
.W
INC
COUP

C,# NBLIGNES
7IDIS
A,# 'A
7DICAR
A
A,/’Z+1

initialisation de’la fenêtre d'affichage
'A est le code A3CII de A (101 octal)
affichage sur l’écran

jalphabet fini?
JUMP.NE ALP2
TRAP ; reprendre le contrôle avec une

.END ALPHA
jtouche quelconque

Le modèle du clavier est simple: chaque touche pressée est mémorisée.
On peut lire son code avec l’appel 7GETCAR, qui donne dans A le
code ASCII de la touche.

Par exemple, pour simuler une machine à écrire, il suffit d'écrire:

Exemple 5.2.

.TITLE MACH

.PROC Z80

.REF SM6

jmachine à écrire-simple

(NLI = 20. /hauteur de l'écran, déjà défini dans .REF SM6j

MACH: LOAD
.W

MA2 : . W
JUMP

C,# NLI
?IDIS
7GETCAR,
MA2

7DICAR ^équivalent à .W 7GETCAR
.W ?DICAR

. END MACH ATTENTION: toujouAA tapeA un RETtIRN pouÆ
h-inÂA la deAnie/ce ligne

REMARQUE: dans cette notice, on écrira NLI pour le nombre
de lignes (=20.). On peut aussi écrire LINES .

5

����������	������	���

���

6. ASSEMBLAGE ET EXECUTION

Les programmes précédents peuvent être tapés sous le contrôle de SMILE,
puis assemblés par l'ordre

Ç PROGRA0 Z (maintenir PROGRA, agir sur Z).

Après assemblage, taper un espace pour reprendre le contrôle et si l'as­
semblage a été correct, exécuter avec l'ordre
(prograQ V)

Reprendre le contrôle avec NMI si c'est une boucle infinie, suivi d'un
espace.

EXERCICE 6.1 Tape/t Zei deux exempZez pÆéeédenZz et ZeuÆ
exécaZZon.

FaxAe C SHOW O Z >-(~ SHOW
dam Lot zonea d'extitLon <=0,1,2,...
mémoLAz tom Z es pttogaammm iapéA.

pouA LAavaÂLLcA
com samoa dam La

EXERCICE 6.2 ModZ^Zeï Ze pfiogaammz de machLm à zcaâaq. pouA Que La tc>u.c.hA

= e^'aee L'écAan.

����������	������	���

���

2ème partie: APPELS PRINCIPAUX DU SYSTEME SMAKY6

7. APPELS DE MISE EN PAGE ET AFFICHAGE DE NOMBRES

7SPACE = 21347
7TAB = 50747
7RETURN = 21747
7DEL = 54347

"Affiche" un espace (ne modifie pas A)
"Affiche" un tabulateur (passe-en colonne modulo 8.)
Passe au début de la ligne suivante (ne modifie pas A)
Efface le précédent caractère (comme la touche DELETE)

7AFBIN = 34347
7AFOCA = 35347
7AFHEX = 34747
7AF0HL = 35747
7AFXHL = 54747

Affiche le contenu de A en binaire
Affiche le contenu de A en octal (en faille Carry et A càd 9 bits)
Affiche le contenu de A en BCD ou hexadécimal
Affiche le contenu de HL en octal
Affiche le contenu de HL en BCD ou hexa

Init

Exemple
Attente
touche

.TITLE

.PROC

. REF

AFCODE ;AZ 23 mai 1980
Z80
sri 6

Echo

Aff. en
octal

Aff. en
hexa

AFCODE:

AF 2:

LOAD
.W

C,# NLI/2
?IDIS

jmoitié de l’écran initialisée Aff. en
binaire

?GETCAR
7DICAR. ?SPACE, 7AFOCA, ?SPACE, ?AFHEX, ?SPACE, 7AFBIN
AF2
AFCODE

EXERCICE 7.? EcæZæc CH ’ 064 OnfeZeUÂ
en BASIC:

1Ô FOR N=1 TO 10
20 PRINT N, 2*N, 3*N
30 NEXT N
40 STOP

SM6 Ze pÆoqÆcunme auÂ. 6 ' écJvit

en PASCAL:

PROGRAFI TABLEAU (ECRAN,OUTPUT)
VAR NBRE: INTEGER;
BEGIN

FOR NBR1:=1 TO 10
DO WRITELN (NBRE,2*NBRE,3*NBRE)

END.

7

����������	������	���

���

8. APPELS DE LECTURE DE NOMBRES

?IN®C = 33747

ÎINDEC = 32747

?INHEX = 33347

EXEMPLE 8.1 Afficher
clavier

Attend un nombre octal et construit sa valeur binaire
dans HL. Une touche non chiffre termine l'appel, qui
revient avec le nombre dans HL, et la dernière touche
(terminateur) dans-A.

Attend un nombre décimal et construit sa valeur BCD
dans HL.
Seuls les 4 derniers chiffres sont conservés.

Attend un nombre hexadécimal et construit sa valeur
binaire dans HL. Les touches A...F sont considérées
comme des chiffres

le caractère ASCII correspondant à un code tapé en octal au

.TITLE AFCODE

.PROC Z80
;MA 17.3.80

REF SMS

;code tapé en octal

AFCODE: LOAD
.W

AFC02: .W

LOAD
.W
JUMP
. END

C.# NLI
?IDIS

?IN0C, ?TAB

A,L
7DICAR, 7RETURN
AFCO2
AFCODE

;INOC donne le nombre dans HL
;H n’a pas de signification
jDICAR veut le caractère dans A

ExeAcZce 8.1.

ExcacZcc 8.1.

Ecazac pAogAzwime qut attend un nombre déctmat de 4
dtgttô et t'a^^tche en btnatAe 16 bttù.

EcaZac te même paog/iamme qu'avant, mat* AépcuteA chaque
groupe de 4 bttA paA un espace.
Indtcatton: décatea te contenu de HL btt paA bit danô
te Caaay avec f tn^tuvactton APP HL,HL. St te CaMuj
vaut 9, a^tcheA 'J)-, tt vaut 1, a^tehea ’l.
Toui tu 4 bttA, a^tche/t un espace.

8

����������	������	���

���

9. REMARQUE IMPORTANTE

registres
Une instruction, un appel, une partie de programme ont un effet sur les

, positions mémoire et périphériques qui doivent être présents
, et qu'il faut bien documenter dès que la fonction n'est pas

courante.
esprit

Exemple 9.1

Instruction AOD A,B

A,B opérandes (8 bits]
A résultat (8 bits)

;mod

CS (C=1) carry set si dépassement de capacité
EQ (Z=1) si résultat nul
SS (S=1) si bit de poids fort à un
F, A

Exemple 9.2.

Appel ?INOC

;in - (touches du clavier)
;out HL nombre tapé
; A dernière touche non chiffre
; C nombre de chiffres tapés
; EQ si le nombre est vide (pas de touche chiffre tapée)
;mod F, A, B, C, HL, écran

Exemple 9.3.

Programme AFCODE

; in
; out
; mod

- (touches du clavier)
écran effacé, codes tapés et caractères correspondants alignés
F, A, B, C, HL, écran

ExcacZcc 9.J Vo cornent evt ave.c. Â,n/out/mod £a pafubiz de. p/iogramme qa-i
a^-cche HL en bZnaÂAe avec de& taanchei de 4 £e££e
qu’eue a été écwtte dam t'ex.eactce 8.2.

10- APPELS D'AFFICHAGE DE TEXTE

On peut afficher un texte préparé en mémoire par l'appel ?TEXT, suivi
de l'adresse (étiquette) du texte en mémoire. Les textes sont déclarés
soit au début, soit à la fin du programme.

����������	������	���

���

Exemple 10.1

TX: LOAD
.W
.w
.w
.w
T RAP

TEX1: .ASCIZ
TEX2: .ASCIZ

Exemple 10.2

C,# NLI
?IDIS
?TEXT,TEX1
?INOC
?TEXT,TEX2

"DONNEZ MOI UN NOMBRE:"
"<CR>MERCKCR>"

On veut vérifier l'ins­
truction d'addition
ADD A,D

.TITLE VERADD

.PROC Z80

.REF SM6

Organigramme;

; vérification de l'addition

VERADD: LOAD
.W

Cj# NLI
?IDIS

VERA2: .W ?TEXT, ADTEX1,
COMP A,# ’ +
JUMP,NE ERROR
LOAD D,L
.W ?INOC

COMP A,# ’ =
JUMP,NE ERROR

?INOC
;seul le + est reconnu comme termi-
-, nateur du 1er nombre
;le 1er opérande est sauvé dans D,
• registre non détruit par les appels
; suivants

LOAD A,L
ADD A,D
.W ÎAFOCA

;seul = est accepté comme terminateur
• du 2e nombre
;2ème opérande dans A
;addition
; affichage du résultat dans A

PUSH AF
POP BC
LOAD A,C
.W ' ?TEXT,ADTEX2,
JUMP VERA2

; 1’instruction LOAD A,F n'existant pas
•il faut faire un détour par la pile en
mémoire

?AFBIN, 7RETURN iaffichage des flags en binaire

ERROR: .W
JUMP

?TEXT,ADTEX3
VERA2

ADTEX1:
ADTEX2:
ADTEX3;

.ASCIZ

.ASCIZ

.ASCIZ

" Tapez l'opération : "
" Fanions SZ-------- C : "
” Tapez le bon terminateur! <CR>”

.END VERADD

10

����������	������	���

���

RenioÆq ue

L'appet ?V1TEX peut auAAl étAe utilisé,
rnolm pAatlque pouA un texte simple, coa
dans HL, et te AeglstAc HL est modiste.

pouA a^lcheA des textes, mais il ut
il ^aut pAépaAeA t'adAesse du texte

PUSH
LOAD
.w
POP

HL
HL,# ADTEX1
?DITEX
HL

est équivalent à .W ?TEXT.,ADTEX1

ExeAclce 10.1 EcaIac un pAogAamme qui attend une séquence de 3 touches
pAédéfinies, paA exempte PTOet a^iche dam ce cas
seulement "votAe co^Ae est ouveAt", et dam tes autAes
caA "j'appelle ta potlce".

11. BRUITAGES

L'appel ?PLAY est semblable à l'appel ?DITEX,
texte pointé par HL, il joue des codes, les mots
de façon simplifiée : t ", j

^PERIODE' LdÛrEE
(nbre de
périodes)

mais au lieu d'afficher le
mémoire étant interprétés

Exempl e 11.1

.TITLE

.PROC

. REF

NUS
Z80
SH6

MUS :

MU2:

MOR:

LOAD
.W

JUMP

.B

HL,# MOR
?PLAY

MU2

DO, RE, DO,
0

; adresse du morceau

; attente; taper NMI pour retourner à SHILE

SIL, MI, SOL
;un zéro doit terminer le morceau

.END MUS
»

PemoAquei

LeA appelA Aont deA motA de 16 bttA qui Aonl InteApaétéA paA te paoceAAeuA
comme deA appetA de AouA-paogaamme. Il doit étAe utltlAé pouA mettAe dam te
pAogAamme un mot de 16 bttA. LeA notes Aont paA contAe deA mots de S bilA,
.3 doit étAe utltlAé dam ce cas.

.ASCIZ "TRUC” est une facilité pour écrire:
,g ’T, ’R, 'U, ’C, 0 (un zéro termine le mot, aucune lettre

n'a le code 0)

11

����������	������	���

���

L'appel ?BEEP permet de ne jouer qu'une note, dont le code a été préparé
dans A.

Exemple 11.2. Simulation d'un clavecin; les touches 0-1-2 jouent DO-RE-MI.
«

.TITLE CLAVECIN

.PROC 280

. REF SM6

; clavecin très simplifié

CLAVECIN: .W
COMP
JUMP.EQ
COMP
JUMP.EQ
COMP
JUMP,ED
JUMP

?GETCAR
A,# '0
J DO
A,# '1
JRE
A,# ’2
J MI
CLAVECIN

JDO: LOAD
.W
J DMP

A,# DO
7BEEP
CLAVECIN

JRE: LOAD
.W
JUMP

A,# RE
7BEEP
CLAVECIN

JMI: LOAD
’.W
JUMP

. END

A,# MI
7BEEP
CLAVECIN

CLAVECIN

Ce programme peut être-allégé

Exemple 11.3

CLAVE CIN ; ,W
LOAD
COMP
JUMP,EQ
LOAD
COMP
JUMP,EQ
LOAD

7GETCAR
B,# DO
A,# ’0
CLA2

CLA2:

COMP
J UMP,NE CLAVECIN

LOAD
.W
JUMP

A,B
7BEEP
CLAVECIN

12

����������	������	���

���

Ce programme est encore très lourd. Il peut être simplifié en utilisant
l'appel 7JUMPCAR = 30747, qui permet de préparer une table de correspon­
dance entre les touches et les adresses de programme à exécuter chaque
fois.

Exemple 11.4.

CLAVECIN: .W
LOAD
.W
J DMP

JDO: LOAD
JD2: .W

J DMP

JRE: LOAD
.W
JUMP

JMI: LOAD
.W
J DMP

TABLE: .BW
.BW

ÎGETCAR
DE,# TABLE %
?JUMPCAR
CLAVECIN ; autres touches

; ignorées
A,# DO
?BEEP
CLAVECIN

A,# RE
?BEEP
CLAVECIN

A,# MI
?BEEP
CLAVECIN

JUMP JD2

} JUMP JD2

’^.JDO
’I.JRE
’2,JMI

.0

;on écrit .BW car la table contient successivement
;un byte (le code de la touche) et un word (l’a-
jdresse de la routine)

L'appel ?BUZZ fait un buzz unique et ne modifie aucun registre. Le code
ASCII BEL=7 a le même effet. On peut donc l'introduire dans un texte, par exemple
pour attirer l'attention de l'utilisateur au moment de lui demander un nombre:

Exemple 11.5

.W ?TEXT,TEX1,?BUZZ,?INOC OU•

TEX1: .ASCIZ "1er NOMBRE?" TEX1 :

.W ?TEXT,TEX1,?INOC

.ASCIZ "1er NOMBRE ?<BELL>"

13

����������	������	���

���

12. APPELS ARITHMETIQUES

Quelques opérations non disponibles sous forme d'instructions du Z80
ont été ajoutées comme appels..

7BINBCD ;in HL
= 52347

;out AHL

;mod F A HL

ÏBCDBIN ; in HL
= 52747

;out HL

;mod HL

ÎCOMPHLDE ;in HL DE
= 27347

;out Carry.EO.Sign

;mod F

?MUL
= 27747

HL

HLDE

HL

HLDE

F A DE HL

nbre binaire (2I
I 0 O O 0 1 O O’O o 0 O 0 0 o 0

■ ■ 1—1-1 1 1 I £ 1 i 1 1 I | 1 »

AHL

HL

(1024)

?DIV

= 30347

HL DE

F A DE HL

DE

HL

HL 0 o <o 01 1 4«O 0 Oo < 1
-LJ J-L.l L.L1J,, L i, J I I t

HL

Terme additif

quotient

nbre BCD (9999)

nbre binaire (23417)

DE

CS=LO
CC=HS
EQ=ZS
SS

si
si
si
si

HL 4 DE <f ,? IlogicalJ
HL > DE -*
HL = DE
HL < DE (arith)

De[Multiplicande]*BC Multiplicateur |

Dividende
_________ i__________

■ «

Diviseur
t ___

A | =0 si carry=0

CS si erreur (dépassement
de capacité)

Exemple 12.1. Vérification des routines de conversion.

.TITLE

.PROC

. REF

VERCONV
Z80
SM6

; convertit un nombre

VERCONV:LOAD
.W

C,# NLI
7IDIS

VER2: .W 7INDEC, 7TAB, 7BCDBIN, 7AF0HL, 7TAB, 7BINBCD, ?A(XHL, 7RETURN
JUMP VER2

. END VERCONV

14

����������	������	���

���

Exemple 12.2. Soustraction de deux nombres positifs, résultat donné en
complément à 2.

.TITLE

.PROC

.REP

SOUSTRACTION
Z80
SM 6

SOUS: LOAD
.W

S0U2: .W
EX
.W
EX
OR
SUBC
.W
J U MP
.END

C,# NLI
?IDIS
?INOC
HL, DE
?INOC
HL, DE
A,A
HL, DE

; sauvetage 1er opérande dans DE

;échange pour avoir le 1er opérande dans HL

}SUB HL,DE (instruction qui n'existe malheureusement pas)

?SPACE, ?AFOHL , ’RETURN
SOU2
SOUS

Exécuter le programme avec une dizaine de paires de valeurs très
différentes.

Exemple 12.3. Soustraction de 2 nombres positifs, a-b, résultat signé

SOUS: LUr. J
.W

C,# NLI
?IDIS

SOU2: .W ?INOC
EX HL,DE
.W ?INOC, ?SPACE
EX HL,DE
.W ?COMPHLOE
JUKP,HS S0U4
EX HL,DE
LOAD A,#
.W ?DICAR

;ler opérateur DE
;2e opérateur HL
; permuter
; 1er op. < 2e op.

;si oui, permuter
;a-fficher le -

S0U4: OR
SUBC
.W
JUMP

*

A, A ;si non
HL, DE
?AFOHL, 7RETURN
SOU 2

Exécuter le programme avec une dizaine
de valeurs très différentes.

SOU2;
1er nombre a

2e nombre b

SOU4: y-----
Soustraire

Afficher le
résultat

Permuter

^fficher-

15

����������	������	���

���

Exemple 12.4. Calculatrice octale 4 opérations, nombre
entiers, en notation polonaise: a b +

CALC:

CAL2:

.TITLE

.PROC

. REF

LOAD
.W

.w
PUSH
.W
LOAD
.W

CALCO ;PP 790913
Z80
SM6

C,# NLI
?IDIS

?IN0C, ?SPACE
HL
?INOC
DE,# TABLE
?JUMPCAR

; 1er nombre
; sauvetage sur la pile
;2e nombre et opérateur

CAL4: .W
JU^P

?TEXT, TX1
CAL2

TABLE:
. EW
.EW
. SW

DOPLUS
DOMINUS
DOMUL
DODIV

;on entre avec le 1er argument sur la pile. le 2e dans HL
;cn sort avec le résultat dans HL et CS s'il y a dépassement de capacité

DOPLUS:
HL, DE
AFFICHE

DOMINÜSsPOP
EX
CR
SU8C
J U fi P

HL,DE
A, A
HL, DE
AFFICHE

; permuter pour soustraire 1er - 2ème

; remplace l'instruction manquante SU3 HL,DE

DOflUL : LOAD
LOAD
PCP
LOAD
.W
EX
LOAD
OR
JUMP,EQ
SETC
JUMP

B,H
9

DE
HL,# 0
?MUL
HL, DE
A,D
A,E
AFFICHE

AFFICHE

; remplace l'instruction LOAD BC,HL

; remplace l'instruction TEST DE et met le carry à 0

;met de carry à 1 0dépassement de capacité)

16

����������	������	���

���

DODIV: LOAD
LOAD
LOAO
POP
.W
EX

B,H
C,L
HL,# 0
DE
?DIV
HL, DE

diviseur

; dividende

jquotient dans HL pour affichage ultérieur

AFFICHE: JUHP.CS
.W
JUMP

AFF2: .W
JUMP

TX1: .ASCIZ

TX2: .ASCIZ

.END

AFF2
ÎAFOHL, 7RETURN
CAL2

?TEXT,TX2
CAL2

* Je ne connais pas cette opération <CR>"

Dépassement de capacité <CR>"

CALC

ExC/tocce 12.1 pAogAamme pA.éeedent pouA. a^tcheA. te Aeôte de
ta dlvtôton précédé de "Reôte:"

Exe,tcxce 12.2. Uodt^teA. te pAogAamme pAéeéde^ pouA. tapeA t’ opéA.atton
en notatton atgébAtque uôuette a + b =

ExeAcZce 12.2. EeAÂAe te pAogA.amme catcatatAtee 2 ou 4 opéA.attonô en déctmat
(nombA.eô entteAô).
Indtcatton: conveAtdA en btnatAe pouA. e^eetaeA. teô catcuti.

17

����������	������	���

���

13. APPELS DE MISE EN PAGE

Avec ?IDIS, les textes commencent toujours au haut de l'écran. Il est
possible de commencer n'importe où en préparant les coordonnées de début
dans HL et en utilisant l'appel 7SETCUR.

L'appel 7GETCUR permet de savoir où est le pointeur (curseur).

Exemple 13.1. On veut afficher un * au centre de l'écran.

.TITLE ETOILE

.PROC Z80
REF SM6

CENTRE = (NCAR/21*XX+ (NLI/2)*YY

ETOILE:

LOAD
.W
LOAD

C,# NLI
?IDIS
HL,# CENTRE
7SETCUR
A,# ’ *
?DICAR

ETOILE
; retourne à SMILE, qui reprend
;à la prochaine touche tapée

le contrôle

Exemple 13.2. On veut que le texte tapé au clavier soit affiché verticalement.

.TITLE VERT

.PROC
RE F

Z80
SMS

; paramètres de mise en page
PREMCAR= 1*XX + 4*YY ; 2e colonne, 5e ligne

VERT: LOAD
.W
LOAD

VERI : -W

C,# f)LI
?IDIS
HL,#PP.EHCAR ;pointeur caractère
’SETCUR

VER2: .W
INC
.W
J DMP

?GETCAR,
H
7SETCUR
VER2

?DICAR jatterite clavier et écho

;JUMP VER1 plus court

. END VERT

18

����������	������	���

���

D
Exemple 13.3 Variante du programme précédent, dans laquelle seuls les

chiffres doivent être affichés verticalement (en fait, pour
simplifier, tous les caractères dont le code ASCII est inférieur
à celui de la lettre A).

VAR: LOAD
.W
LOAD
.W

VAR2: .W
COUP
J WP, LO
.W
J WP

VAR4: PUSH
.W
POP
INC
.V/
J WP

c,# NLI
?IDIS
HL,# PREMCAR
’SETCUR

ÎGETCAR
A,# 'A ; chiffre ou lettre 1
VAR4
?DICAR ; lettré -
VAR2

AF ; chiffre
’GETCUR
AF
H
?SETCUR,?DICAR
VAR2

VAR

Quetâton: nonib/ie-à i' a^tehent en en obttqae.
Pounquot? CoAnÂgeA te pnognamme.

14. ATTENTE

L'appel .W ?DELAY,ATT
de ATT millisecondes

permet de ralentir l'exécution en créant une attente
(ATT 4 65 000.)

Eexmple 14.1. Le programme doit imiter le tic-tac d'une pendule.

.TITLE

.PROC

TIC = 11
TAC = 21
AT1 = 500
AT2 = 540

TICTAC: .W
LOAD
.W
.W
LOAD
.W
J U HP

TICTAC
Z80
SM6

9

?DELAY,AT1
A,# TIC
’BEEP
?DELAY,AT2
A,# TAC
?BEEP
TICTAC

Attente

Tic

. END TICTAC

Exe/icZce 14.1. Ecjùaq. te. piog/tamme quÂ déptace un ccuMctèAe.
t'écAan, en te cubant nebonddA aua tei> bondi (utdtiieA

?SETCURSÛR, 7SPACE, ?P1CAR, ?VELAY}. 19

����������	������	���

���

3ème partie. INSTRUCTIONS PRINCIPALES DU PROCESSEUR Z80

15. INSTRUCTIONS DE TRANSFERT

Ces instructions ne modifient pas les fanions.

LOAD

f# VAÙ

VHL)>

Exemples :

LOAD E,#NBRE1

LOAD D,A

LOAD (HL),C

charge dans E la valeur NBRE1
déclarée au début du programme

chargement de D par le contenu de A

chargement de la position mémoire
dont l'adresse est dans HL par le
contenu de C

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

EX

A (DE)
(HL)

LOAD A,COUNT

PUSH

(BC)
S(DE)
(HL)

ADVAL
SADPER

BC
■< DE
[HL

ADVAL ,

HL,DE

A

IADVAL
[SADPER

, A

f # VAL 1
[ADVAL *

(BC ')

1 DE >
HL

LOAD A,$CLA

LOAD SAVEHL,HL

AF^
BC ।

I DE
[HL

POP

AF)
BC
DE
HLJ

chargement de A par le contenu de
la position mémoire d’étiquette
COUNT, déclarée par
COUNT: . BLKB 1 ou

4

COUNT = 42000 (position mémoire
permise, visible sur l’écran]

lecture directe du périph. clavier

transfert dans la position SAVEHL du
contenu de HL.
A la fin du programme, on a par
exemple: SAVEHL: .BLKW 1

Instruction d'échange de HL de DE

Sauvetage d'une paire de registres sur la pile.
Récupération dans une paire de registres du sommet de
la pile.

Succédanés à des instructions manquantes:

LOAD HL, DE

LOAD A , F

LOAD H,D
LOAD L,E

PUSH AF
POP BC
LOAD A,C

modifie B et C
en plus de A

[PUSH BC
PUSH AF
POP BC
LOAD A,C

kPOP BC
Ne modifie que A

HL,BC

PUSH HL
J PUSH BC

1POP HL
[POP BC

16,8 us de temps

PUSH HL
LOAD H, B
LOAD L,C
POP BC

PUSH BC
EX (SP),HL
POP BC

d'exécution 20

����������	������	���

���

16. INSTRUCTIONS ARITHMETIQUES 8 BITS

Ces instructions modifient les fanions C,Z,S,V.

ADD !
ADDC
SUB
SUBC '
COMP |

AND
OR
XOR ;

(HL) J

Exemples :

ADDC A,#0

COMP A,(HL)

CPL A Complément à 1 de A

NEG A Complément à 2 de A

DA A

INC
DEC

RL

RLC

RRC

SRC-

ASR J

ajoute à A 0 ou 1 selon la valeur
du Carry.

compare le contenu de A avec le
contenu de la position mémoire dont
l’adresse est dans HL

Correction BCD après une opération 8 bnits sur A
(Utilise le Carry et le Carry auxiliaire généré lors de
1'opération 8 bits)

INC (HL)

■ Rotation-à gauche

ajoute 1 au contenu de la position
mémoire dont l'adresse est dans HL

SLC

RR- >

JHL)

Décalage à gauche

Rotation à droite

fO*r~ 'h

Rotation à gauche à travers le Carry

Rotation à droite à travers le Carry

Décalage à droite (:2 nombre logique)

Décalage à droite (:2 nombre arithmétique)

Succédanés à des instructions manquantes:

LOAD
CPL B s CPL

(LOAD

J LOAD

UE G B \ NEG
LOAD

A,B
A
B,A

LOAD A,#-l
SUB A,B

A,B
A
B,A

XOR A,A
SUB A,B
LOAD B,A

modifient A et F
en plus de B

PUSH AF
XOR A,A
SUB A,B
LOAD B,A
POP AF

ne modifie que B

21

����������	������	���

���

17. INSTRUCTIONS ARITHMETIQUES 16 BITS

Ces instructions modifient les fanions C,Z,S,V d'une manière qui n'est
toujours logique.

pas

Exemples :
ADD
ADDC
SUBC

ADD HL,HL

ADDC HL,HL

double le contenu de
(modifie C, mais pas

double le contenu de
ajoute le Carry
(modifie C,Z,S,V)

HL
Z.S.V)

HL et

INCT
DEC J

BC
DE J
HL J

ne modifient pas du tout les fanions

Succédanés à des instructions manquantes:

SUB HL,DE

S LC HL

SRC HL

ASR HL

NEG HL

(OR
1 SUBC

(ADD

(SRC
(RRC

[ASR
| RRC

LOAD

SUBC
EX

A,A
HL,DE

HL,HL

HL,DE
HL,#O
A,A
HL,DE
HL,DE

modifie F

DA HL

Exemple 17.1

; in
; out
;mod.

MULEA:

MUL2 :

MUL4 :

soustraction de HL et DE

décalage à gauche de HL (double)

décalage à droite de HL (divise par 2 les
nombres logiques)

décalage à droite de HL (divise par 2 les
nombres arithmétiques)

ZLOAD A,L
CPL A
LOAD L,A

<L0AD A,H
|CPL A

LOAD H,A
\INC HL

complément à 2 de HL

impossible: il faut faire toutes les opérations
dans A et corriger au fur à à mesure.

Routine de multiplication de
résultat dans HL (16 bits).

E(8 bits) par A(8 bits),

E multiplicande,
HL produit
F,A,B,D,E,HL

A multiplicateur

LOAD
LOAD
LOAD

D,# 0
HL,# 0
B,# 8.

TEST A:0
JU(1P,EQ MUL4
ADD HL,DE

SLC E
RLC D
RR A
DECT,NE B,MUL2

;DE multiplicande 16 bits
jproduit partiel initial

;bit de poids faible de A

;add. du multiplicande au produit partiel

,;SLC DE décalage de DE (double)

; décalage de A

7 EX

����������	������	���

���

Variante: les instructions TEST A:0
JUMP.EQ MUL4

sont en général remplacées par

RR A

RR A
JUMP.CC MUL4

Programme complet permettant le test de la routine:

.TITLE MULT
.PROC Z80
.REF SMS

routine de multiplication et prog. de test

TEST: LOAD C,#NLI
.W ?IDIS

TE2: .w
LOAD
.W
LOAD
CALL
.W
JUMP

?INOC, ?SPACE
E,L
?INOC, ?SPACE
A,L
MULEA
7AFOHL, 7RETURN
TE2

;multiplicande

;multiplicateur

.•résultat dans HL

; routine ...

MULEA: ...

. END TEST

ExeAcx.ce Î7.L. Modt^teÆ t'exempte 17.1 pouA e^ectucA te p/ioduxt en
commençant paA tu potelé fiotâA de A, avec décatage à
droite de VE.

Exemple 17.2. Routine de multiplication de HL (16
résultat dans AHL (24 bits).

bits) par A (8 bits),

;??????????
; ; ?MULHLA
;??????????

HL, A, AHLNUL

PUSH BC
PUSH DE
LOAD B, *8.

MUL1:

MUL2:

EX HL,DE
LOAD HL,*0
ADD HL,HL
RLC A
JUMP.,CC MUL2
ADD HL,DE
ADDG A,*0
DECJ.NE B.MULl
POP DE
POP BC
RET

;décompteur de cycles de multiplication
;multiplicande dans DE
;produit partiel initial
;décalage du produit partiel
îdécalage du poids fort du multiplicateur dans le Carry
;addition si ce bit vaut 1
; débordement éventuel sauvé dans A
; répéter 8 fois

EKUctee 17.2. Ecaxac et tute/c ta Matxne de dtvûton Il L : A

23

����������	������	���

���

18. INSTRUCTIONS DE TEST

Elles permettent de savoir si un bit, un octet (byte), un sedet (word) est
égal à zéro ou non.

Test de bit:

TEST RANG

Exemples :

BSIGNE = 7
• • •
TEST H-.BSIGNE charge le fanion Z avec la

valeur du bit de poids fort
de H (si BSIGNE = 7)

TEST (HL):0 charge Z avec la valeur du bit de
poids faible de la position
mémoire dont l'adresse est dans
HL

Succédanés aux instructions de test d'octets et sedets:

TEST A

TEST HL

]OR A,A

j LOAD A,H
] OR A,L

modifie A

ADD A,#0 Z=1 (EQ) si A est nul

Z=1 (EQ) si HL est nul (le mot (ou les deux moitiés du mot)
ne peut être nul que si le nombre
total est nul)

2A

����������	������	���

���

19. INSTRUCTIONS DE SAUT ET D'APPEL DE ROUTINES

JUMP 1
CALL J

ETIQ Exemple :

JUMP]
CALL/

EQ
NE
CS

S CC
SS
SC
VS

I^VC

LOI
HS>
MI
PL

ETIQ

Exemple 19.1

;sous programme pour ajouter

in CBA
out CBA, EQ si CBA=0
mod F,CBA

INCCBA: INC
RET,NE
INC
RET,NE
INC

A

B

ADD
JUMP,CS

ADD
JUMP,VS

A,B
OVERFLOW

A,B
OVERFLOW

COMP A,B
JUMP,LO PLUPETIT

COMP A,B
JUMP,MI PLUSPETIT

DEC BC
LOAD A,B
OR A,C
JUMP,NE LOOP

A,B positifs (nombres logiques)
saut si A+B 2e

A,B arithmétiques
saut si |AI + IBI > 2^

A,B positifs
saut si A < B (nbres logiques)

A,B arithmétiques
saut si A< B

DECJ.NE BC.LOOP (modifie AI)

dans le registre 24 bits CBA

����������	������	���

���

20. INSTRUCTIONS DE MODIFICATION DE BITS

SET
CLR

FA ï
B

\ : RANG

E
WJ

Exemple:

FLAG1 = 3

SET D:FLAG1 . » , 3met a zéro le bit 2 de D si FLAG1=3

pourrait s’écrire LOAD D:FLAG1,#1

SETC Met le Carry à 1 (SET C voudrait dire met à 1 le registre C)

CPLC Complémente (inverse) le Carry

Succédanés aux

CLRC {OR A,A

instructions manquantes:

clear le Carry
(modifie S,Z,V en plus)

SETC
CPLC ne modifient que le Carry

On peut modifier un ou plusieurs bits avec les opérations logiques ET, OU.

OR A,# 200

AND A,# 177

est équivalent à set A:7

est équivalent à clr A:7

OR A,# 360 est équivalent à set A: (7,6,5,4)

AND A,# 17 est équivalent à clr A:{7,6,5,4)

Certains processeurs (PDP11 en particulier) ont les instructions

BIS (bit set) et BIC (bit clear)

bis a,b S or a,B les bits de A correspondant aux bits de B qui valent 1 sont mis à 1

CPL A
OR A,B les bits de A correspondant aux bits
CPL A de B qui valent 1 sont mis à zéro

LOAD

BIC
LOAD
CPL

l.AND A,C

L'instruction BII (bit inverse) est réalisée par l'instruction XOR (ou exclusif)

L'instruction clr peut être réalisée avec un XOR A,A (1 byte) ou

LOAD A,#^ (2 bytes).

26

����������	������	���

���

4e partie: TECHNIQUE DE PROGRAMMATION

21. REGISTRES EN MEMOIRE

Lorsque le nombre de registres à disposition est insuffisant, des positions
mémoire sont utilisées comme registres supplémentaires. Le Z80 est toutefois
un processeur très pauvre pour travailler directement avec la mémoire. Les
transferts 8 bits ne peuvent se faire qu'avec A, les transferts 16 bits avec
HL, pE> BC. Ces instructions de transfert prennent beaucoup de place.
Les positions mémoire utilisées comme registres sont caractérisées par une
étiquette et sont définies par un .B ou .W.
Toutes les opérations doivent être exécutées dans les registres, et les posi­
tions mémoire ne peuvent être utilisées que pour dauver provisoirement une
valeur. Par exemple, les compteurs ou décompteurs de boucle sont Souvent rêa-
lisés en mémoi re.

LOAD
LOAD

LOOP:

A,# CINITIAL
COUNT.A ; initialisation du compteur

LOAD
DEC
LOAD
JUKP.NE

A.COUNT
A
COUNT.A
LOOP

;DEC COUNT
1 modifie A

COUNT: ■.réserve un byte en mémoire
;(à la fin du programme)
;et l'initialise à la valeur 0

La pile est une zone mémoire particulière très pratique pour sauver les registres.
L'adresse est implicite; il n'est pas nécessaire de la déclarer.

L'exemple précédent peut s'écrire comme suit si le compteur est sur la pile.

A,# CINITIAL
AF

Imodifie A

L'utilisation de la pile nécessite des précautions, car il ne faut pas se
tromper dans l'ordre de remplissage et vidage, et surtout ne jamais avoir
dans une routine ou une boucle plus de PUSH que de POP: la pile remplit
alors toute la mémoire, jusqu'à destruction du programme, si l'on appelle

souvent la routine.

27

����������	������	���

���

22. TABLEAUX EN MEMOIRE

Une zone mémoire de m bytes à partir de l'adresse TABL peut être réservée
avec 11 instruction

TABL: .BLKB m (.Block Byte)

Si cette zone doit recevoir des mots de 16 bits, on utilise la pseudo-instruction
.blkw-

Pour traiter des tableaux de nombres, les registres 16 bits du Z80 sont utilisés
comme pointeurs dans ces tableaux (ils contiennent des adresses de nombres dans
les tableaux) et le registre A est utilisé pour les aJjnnrtinnc AxJcfoo—>

Exemple 22.1 Addition de 5 nombres entiers 8 bits préparés dans un tableau.
Le résultat doit être placé en 6e position du tableau.

ADTAB: LOAD
LOAD
XDR

HL,# TABLE
B,# LONGTA
A,A

;init. pointeur table
;init. décompteur boucle
;A=0, carry = 0

AGT2: ADD A,(HL)
INC HL
DECJ.NE B.ADT2

:add. la valeur pointée

RESULTAT:

TABLE:

LONGTA

LCAD (HL),A ; sauvetage du résultat

LONGTA

TABLE: .BLKB LONGTA
ou TABLE: .BLKB LONGTA+1

RESULTAT:.BLKB 1

Le contenu du tableau a été préparé ou construit par un autre programme.

Le tableau peut être initialisé n'importe où dans la mémoire. L'habitude est
de regrouper tous les tableaux dans une zone commune, en fin de programne.
Avec le SMAKY6, il est intéressant de placer ces tableaux dans l'écran, qui est
une zone mémoire affichée en permanence. Si les 8. premières lignes sont réservées
pour les dialogues avec l'utilisateur, la mémoire à disposition pour les tableaux
va de -4^ûü~(7Tébu t de la 8ême ligne) à 42377 (coin inférieur droit de l'écran).
Il y a 100=64. bytes par ligne d'écran. L'adresse des débuts de table doit être
définie par un = . + SALÎMA +

*

Exemple 22.2. Programme complet pour la préparation d'un tableau de nombres,
le calcul du total et l'affichage du résultat.

.TITLE TABLEAU
■ .PROC ZÔO

.REF SM6
;définitions propres au programme
LIGNE = 8.
TABLE = SALPHA+16/NCAR ; tableau au début de la 16ème ligne écran
LONGTA = 5 ; tableau de 5 bytes
; programme
TABLEAU:LÆAB------ C,# NCI—

---------- ; efface tout l’écran
LOAD C,# LIGNE

?IDIS ; initialise 8. lignes seulement pour la suite
28

����������	������	���

���

;remplissage tableau

LOAD
LOAD

OE,#'TABLE
B,# LONGTA

; ne pas utiliser HL, qui va être modifié
;par ?INOC

TAB2: PUSH BC
.W ?INOC, ?SPACE
POP BC
LOAD A,L
LOAD (DE),A
INC DE
DECJ,NE B.TAB2

; calcul total

LOAD HL,# TABLE
LOAD B,# LONGTA
XOR A,A

TAB4: ADD. A, (HL)
INC HL
DECT,NE B.TAB4
LOAD (HL),A

;affichage du résultat

LOAD HL,# TABLE+LONGTA
LOAD A,(HL)
.W ?RETURN, ?AFOCA, 7RETURN

.END TABLEAU

Exe/iczce. 22. J. ModZ^ZeA Z'exewipZe précédent pou.Æ déXecWt un dzpcuiQjnznt
de capacité, zt/ou un /iz^uLtout coMizct 16

ExeÆCzéee 22.2. 2 ta.bte.aux TAB1 =41000 et TA82 = 41200.
Rempttx. ceô ta.bte.aux. ave.c de^> codu ASCII [appeZ 7GETCAR).
CatauteA ta tomme, byte. à byte de cet 2 tabteaux dant
TAB3 = 41400.

L’"organigramme" pour cet exercice peut s’écrire

Initialisation écran
Init. 1er tableau et compteur
Remplissage avec des codes ASCII
Init 2e tableau et -compteur
Remplissage 2e tableau
Init. pointeur 1er, 2e tableau et tableau des résultats
Addition
Affichage éventuel en clair des nombres contenus dans le tableau des

résultats

29

����������	������	���

���

23. TABLE DE CONVERSION

A une valeur connue correspond souvent une autre valeur que le programme
doit déterminer. Si le calcul est trop long ou trop compliqué, une table
à deux entrées permet d'obtenir les valeurs cherchées.

Le cas le plus simple se trouve lorsque les valeurs connues sont comprises
entre 0 et 255. (entiers 8 bits). Le tableau des valeurs correspondantes
est défini en mémoire avec un .B (byte) ou .W (word).

Exemple 23.1 Dessiner sur l'écran des caractères faisant apparaître une demi-
sinusoïde.

Les lignes 0, 1, ... 17. correspondent aux valeurs des sinus
de 10° en 10°. La table de sinus est à définir de 10° en 10°

également.

.TITLE SINUS

.PROC Z8O

.REF SM6

SINUS: LOAD
.W

LOAD
LOAD

SIN2: LOAD'
LOAD

ADD
LOAD
LOAD
ADDC
LOAD

LOAD

A,D
HL,# TASIN

A,H
A,# 0
H,A

B,(HL)

•«compteur de ligne
;angle initial

jangle dans A
jpointeur au début de la table de sinus

>;ADD HL,A calcul du point
dans la table

d'entrée

jvaleur du sinus dans B

LOAD A,# ’

INC B
SIN4: DEC B

JUMP.EQ SIN6
.W ?DICAR
JUMP SIN4

SIN6: .W ?RETURN

INC ’ D ;angle suivant
DEC C ; décompteur
JUHPjNE SIN2

T RAP
;table prop. au sinus: sin 90° = 50.

TASIN: .B 0
.B 9. ;50«sin 10° = 8,68
.B 17. ;50-sin 20° = 17,1
.B 25. ;50-sin 30° = 25
.B 32. , 38. , 43., 47. , 49. , 50. ;etc>
.B 49. , 47. , 43. , 38. , 32. , 25. , 17. , 9. , 0

SINUS

30

����������	������	���

���

Exemple. 23.2. Ûn veuZ j ouest du no tu auut eosisteetement que poutbte.
La. stangée de touehu ASVFGHJKL doit pesmettsie de •
j ouest tu gcunma. A chacune de eu touehu cosistupond une Sé­
quence est une dustée, expsuûnée en nombae de pésitodu. Lu
touehu iont steeonnuu past teust code ASCII, qut n'ut matheu-
steuéement pu dau t’ostdste du touehu.

1 este àotutton: coutstutste une gstande tabte, dans> t’ostdste du eodu ASCII.

Note Touche Code ASCII

DO A 101
■ B 102

C 103
MI D 104

E 105
FA F 106

No d'ordre Période Nbre périodes

0 277 103
10 0
2 0 O
3 230 125
4 0 0
5 217 132

Après avoir lu le clavier, on soustrait la valeur ’A=101 pour avoir le
numéro d'ordre dans la table, on double ce n° d'ordre étant donné qu'il y
a deux bytes pour chaque note, et on prélève dans la table la fréquence
et le nombre de périodes qui permettent de jouer cette note.

2éme àotutton: poust évttest ta ptaee pestdue dans> ta tabte précédente, une
pstemtéste tabte ut batayée poust tstouvest quet ut te No d'ostdsie de ta
touche pstuiée.

No d'ordre Touche

Ce No d'ordre permet ensuite d'accéder à la table des périodes et durées,
qui sont dans l'ordre des notes.

Cette deuxième solution est plus flexible, mais son temps d'exécution est
plus grand. On entendra donc plus le raccord entre deux notes.

31

����������	������	���

���

24. MISE AU POINT PROGRAMMES

La mise au point d'un programme peut être rapide ou très longue et pénible. Ceci
dépend essentiellement de la méthode de travail utilisée.

Un premier principe à appliquer est de bien réfléchir au programme avant de le
taper, de bien le structurer en le tapant, de le sauver avant de commencer la
mise au point.

Une bonne méthode est le test sur papier. Une fois que le programme est
écrit sur brouillon, on vérifie son déroulement en simulant soi-même le pro­
cesseur, copiant l'état des registres sur une feuille de papier, dessinant
1'écran, etc.

Un deuxième principe est de décomposer le programme en modules, de si possible
tester chaque module séparément, et en tous cas de rajouter pendant la mise au
point des instructions d'affichage de résultats partiels entre chaque module.
En particulier, il est conseillé d'afficher les variables dans l'écran et, si
un usage fréquent de la pile est fait, d'y placer également la .pile
avec l'instruction LOAD SP,# 42377.

L'interprétation du contenu de la pile est délicat à cause de 1'interruption,
mais les erreurs éventuelles de PUSH/POP apparaissent clairement.

L'instruction TRAP permet d'arrêter 1'exécution et d'examiner les états des
registres (sous SMILE, ordre (PROGRA3 R ~)). Il est possible de continuer
l'exécution à partir de ce point d'arrêt avec (^RÔGÊS On peut donc
avoir olusieurs TRAP dans un programme.

Il est également possible de définir une routine de test qui affiche des
registres, des positions mémoire, ou joue des notes, et d'appeler ensuite
cette routine à certains points du programme où on a de la peine à imaginer
ce qui se passe.

De façon générale, tester un programme n'est pas vérifier qu'il fonctionne
une fois. C'est être sûr que, quelles que soient les conditions d'utilisa­
tion de ce programme, il fonctionnera correctement. Cette philosophie doit
s'appliquer d'abord aux modules et ensuite au tout.

����������	������	���

���

Choix d'exercices

25. PROBLEMES

25.1. CatcuteA £ez nonibÆez pAemZeAZ Zn^éAÂeuAZ à 2 .
A^Zc/ieÆ £cua vaZeuA en décxniaZ tuA t'écAan, puit a^ieheA te cAibte
d'ÊAatottène pouA tu 1 280. pAemièAU vateuAt (t’écAan a 64.x20. eaAaetéAU).

%

25.2. FaiAe une ttatittique du codez tAouvét dant 2048. potitiont eontéeutivu
en mémoxAe (à paAtdA d'une adAute variable.].
RepAéz enZe/t an hûto g ranime, du vatetLU, cateutu ta moyenne, et t1 écAan typ^--

25.3 GénéACA. éuA te haut-paAteuA te code moue du eakaetenu tapé^ au ctavteA.
MémoftûeA te mutage dant une zone mémoire, pouA pouvotA te AéexpedÂeA
automatiquement une 2e ^ott.

25.4. EcAÂAe tu Aoutinu 2AF0HL, ?AFXHL en tuppAimant tu zéAot non ttgnt-
^dcati^t au début du nombAe. GénéAatûeA eu Aoutinu pouA a^teheA du
nombAu muttipAécûdon en mémodAe.

25.5. EeAiAe du Aoutinu RHO A, RHO HL qud génëAent dant A ou HL un nombAe
entieA atéatodAe.
EeAÂAe te pAogAamme qui. véAi^ie ta natuAe atéatodAe de eu nombAu.

25.6. EeAiAe un pAogAaimie qui peAmet de généAeA tuA t’éeAan un "thow" pubtiet-
taÂAe avee du textu pAépaAét à t'avanee, du moti^t déeoAati^t, du
métoddu, ete.

25.7. EcAine un pAogAamme qui peAmet d'a^ieheA tuA tout t'éeAan une hoAtoge (a^i^..
ehage 7 tegmentt ou anatogique). Lu Aoutinu de bâte doivent peAj^ettAe de
généAeA du tegmentt de tongueuA et inetination donnée, ou de AetieA
paA un tegment deux pointt donnét.

25.8, EeAiAe un pAogAamme peAmettant de AemptdA un fioAmutaiAe a^iehé tuA t’éeAan
en eaAaetèAU inveuét, et de mémoAiteA ou peA^oAeA au ^ua et a muuAe ta
paAtie tigni^ieative du quutionnaiAe.

25.9. EeAÂAe une Aoutine BEEP jouant du notu autti eoAAeetu que pottibte.
FoAmat pAopoté:

____________ i-- -------------------- --

Octave TRIPLE CROCHE = 0
DOUBLE CROCHE = 1

0: baS CROCHE = 2
15 aigU NOIRE = 3

NOIRE POINTEE = 4
BLANCHE = 5
BLANCHE POINTEE = 6
RONDE = 7

SILENCE = 0
00 = 1
DOD = 2
RE =3
MIB = 4
NI =5

etc.

����������	������	���

���

