Mis a disposition par Jean-Daniel Nicoud Numeérisé par micromusee.ch

Mars 2024 50 /

CMARYG

INTRODUCTION A LA PROGRAMMATION AVEC SMILE

Octobre 1980

EPSITEGC-sysiem sa

Numeérisé par micromusee.ch

INTRODUCTION A LA PROGRAMMATION DU SYSTEME

W AVEC SMILE Octobre 1980

Le but de cette notice est d'apprendre & programmer en langage d'assemblage
et de se familiariser aux caractéristiques des microprocesseurs, en particulier
du Z80 utilisé comme processeur du SMAKY6. Elle contient des exemples qui

1llustrent les explications, et des exercices qui sont & exécuter directe-
ment sur un SMAKY.

Un SMAKY avec un systéme 1.6 ou.ultérieur est nécessaire.

La variante SMILE 2.5 est utilisable, mais les révisions 3.4 et ultérieures sont
préférables.

lére partie: INTRODUCTION GENERALE

1. ARCHITECTURE

Le SMAKY6 contient, en plus du processeur, une mémoire morte (ROM).contenant un
programme de dialogue initial et de nombreux sous-programmes fa§111tant la pro-
grammation. Des interfaces permettent de lire un clavier, d'afficher des carac-
téres sur un écran et de communiquer avec des périphériques extérieurs (COBUS,
lecteur, perforateur, etc.). La mémoire vive est chargée par les programmes

utilisateur.

Pour pouvoir faire Tes exemples et exercices qui suivent, 11 faut tout d'abord
charger SMILE dans un SMAKY; i1 faut procéder de différentes facons selon la

configuration d@ disposition.

- N — -

-

1) A 1'EPFL, aprés un RESET ou un LOGOUT, taper {Clé Q'accésq PUiS ;SMILEQ
la cl1é d'accés est un nom, un surnom (connu du systéme) ou un nom de

répertoire.

2) Sur un SMAKY avec floppy, taper SMILEs, aprés avoir bootstrape,

Numeérisé par micromusee.ch

2. SMILE

Le programme SMILE, unefois chargé en mémoire, permet d'éditer, d'assembler et de
démarrer des programmes. Dans le mode d'édition, le clavier-écran se comporte
comme une machine a écrire, avec des possibilités supplémentaires de correction
grace aux touches fonction supplémentaires (Maintenir la touche CAPS LOCK en-
foncée pour taper les programmes). Par exemple, pour déplacer le curseur dans un
texte tap@ sur 1'écran, on maintient CURSOR pressé et on donne la direction et
1'amplitude du déplacement avec 1'une de 10 touches repérées par des fléches.

m @ ﬂl@ B.uq-

. I.- Lfé.l‘ V(B f: l -

avance le pointeur d'un caractére

recule le pointeur d'un caractére

descend le pointeur d'une iigne

remonte ie curseur d'une ligne

descend le pointeur de 4 lignes

remonte le pointeur de 4 lignes

avance le pointeur d'un mot

recule 12 pointeur d'un mot

place 'e pointeur & la Tin du texte

nlace le =2oint2ur 2u déhut du texte

EXERCICE 2.1 Tapenr Le modéle ci-conthe. EXERCICE D'EDITION
Utilisen La fouche TAB pour
avancen d'une cofonne, A .
La touche BS. pour efpacen i -
Le caracténe précédent, - -4
La touche DEL powr eppacern

Le caractine se thouvant (Taper CA) (TAD) (=) (GPACL) (2) (R TURNY...)
sous Le cunseun

Numeérisé par micromusee.ch

3. MODELE SIMPLIFIE DU Z80

Le SMAKY6 comporte 1'égquivalent de 300000 transistors; nous nous contenterons
donc en premiére &tape d'un modéle trés simplifié, ce qui est possible grédce
aux sous-programmes (appels) contenus dans 1a ROM.

Le modéle simplifié du processeur Z80 est le suivant: il a trois registres A, B
et C de 8 bits, 2 registres DE et HL de 16 bits (considérés parfois comme

4 registres D E H L de 8 bits), et un registre de fanions (flags) F, contenant
les indicateurs C (carry), Z(equal, equal to zero), S(sign) et V(arithmetic
overflow).

Mémoire
R .. K

BYTE

WORD

La.mémoire contient le programme et les données, qul sont soit des octets (byte),
soit des sedets (word). Une zone mémoire particuliére joue le rdle d'une pile, |

sur laquelle on peut "poser” ou "pousser" (push) le contenu d'une paire de
registres, pour le reprendre (pop) pPlus tard.

-.RegiStre o8 % 8 - 53000:

Piie (en mémoire)

>
n
U
N
o |
o
=1

Que]ques'jﬁstructions typiques sont:

LOAD A,B chargement de A avec le contenu de B (ne modifie pas B)
LCAD A,# 5 chargement de A avec la valeur 5 (octale)
LOAD A,5 chargement de A avec la valeur contenue dans la 5e cellule

mémoire (cette adresse est en ROM; elle contient 17)

ADD A,C ' addition de A et C, résultat dans A.

Carry mis & 1 si dépassement (nombres logiques) (CS)
Z mis & 1 si le résultat est nul (EQ)

S mis & 1 si le signe (bit de poids fort) est a 1 (SS)
"V mis 38 1 si dépassement (nombres arithmetiques) (VS)

CoiP A, # 2 compare le contenu de A et la valeur 2.
Z mis & 1 si A=2 (EQ)

C mis &8 1 si AC2 (LO) (A contient le nombre logique)
S mis a 1 51 A<Z2 (SS) (A contient un nombre arithmétique)

Il

A

RRC A" rig rotation de A & travers le Carry (modifie'C,Z,S)

NG A ajoute 1 & A (modifie C,2,S)

JUMP NEAT saut & l'instruction d'étiquette NEXT

JUMP,EQ LOOP saut a l'instruction d'étiquette LOOP si le fanion Z vaut 1
(résultat précédent égal a zéro ou comparaison égale)

| st équivalent o s .

DECJ,NE B, LOOP 5 ULV - - JUMP,NE LOOP

Decompte B et saute a LOOP si le résultat est Z0 (Non Fagual),

continue si U=l

Numeérisé par micromusee.ch

PUSH AF sauvetage des 2 registres A et F sur la pile
POP BC transfert du sommet de la pile dans BC
EX HL, DE

échange des contenus des registres HL et DE

4. SRUCTURE D'UN PROGRAMME

Les instructions seront alignées dans un programme dont la structure
générale est la suivante:

TITRE

Indicatdons pour 1l'assembleur
Commentaires

Etiquette: | Code

(mnémonic)

Opérandes |;commentaires

Indication de fin pour l'assembleur

Exemp]e 4.1.

.TITLE TEST .KP 29.5.80
.PROC 280
. REF SMB
sboucle infinie
Bi=F LOAD A, # ;A contient successivement 1,
DEBZ: ADD A,A e ey g0 iF s nnsdlOsdid; AT B30T 37 8: 377 BEE
INC A ;mals on ne voit pas son contenu
JUMP DEBZ | ¢ - |
. END DEB

& UTILISATION DE L'ECRAN ET DU CLAVIER

L'écran est une grille de 20.x 64. caractéres que 1'on doit initialiser
et sur laquelle on peut déposer des caractéres de fagon séquentielle ou

aléatoire
XX

d

.‘6‘"“

Numeérisé par micromusee.ch

L'appel .W ?DICAR permet d'afficher le caractére dont le code a &té
préparé dans A.

Par exemple, pour afficher 1'alphabet sur 1la premiére ligne de 1'écran,
le programme est le suivant: |

Exemple 5.1.

. TITLE ALPHA
.PROC Z80
.REF SMB

;atfiche 1'alphabet

NBLIGNES = 10, ;10. lignes pour la fenétre d'affichage
ALPHA: LOAD C, # NBLIGNES

W ?IDIS ;initialisation de la fenétre d'affichage

LOAD A,# 'A ; 'A est le code AGCII de A (101 octal)
ALP2: W ?DICAR ;affichage sur 1l'écran

INC A

COMP A,# Z+1 ;alphabet fini?

JUMP,NE ALPZ

TRAP . reprendre le contrdle avec une

; touche quelconque
. END ALPHA

Le modéle du clavier est simple: chaque touche pressée est mémoriseée.
On peut lire son code avec 1'appel 7?GETCAR, qui donne dans A le
code ASCII de la touche.

Par exemple, pour simuler une machine a& écrire, il suffit d'écrire:

Exemple 5.2.

.TITLE MACH
.PROC 280
.REF SMB

:machine & écrire- simple

(NLI = 20. ;hauteur de l'écran, déja défini dans .REF SM6)

MACH: LOAD C,# NLI

a7 ?IDIS
MAZ: v . ?GETCAR, ?7DICAR ;équivalent a ‘{'w FGETCAR
JUMP A2 W ?DICAR

. END MACH ATTENTION: Zoujowrs Laper un RETURN pour
fainin La denwncene Ligne

REMARQUE: dans cette notice, on écrira NLI pour lc nombre
de lignes (=20.). On peut aussi c¢crire LINES .

Numeérisé par micromusee.ch

6. ASSEMBLAGE ET EXECUTION

Les programmes prédédents peuvent &tre tapés sous le contrdéle de SMILE,
puis assemblés par 1'ordre

PROGRA,)Z) (maintenir PROGRA, agir sur Z).

Aprés assemblage, taper un espace pour reprendre le contrdle et si 1'as-
semblage a été correct, exécuter avec 1'ordre

(__PROGRA(v)

Reprendre le contrdle avec NMI si c'est une boucle infinie, suivi d'un
espace.

EXERCICE 6.1 Taper Les deux exemples précéedents et vérifdiern Leun
exécution.

Faine CSHOW Q) < »—CSHOWQ £ pour thavailler

dans Les zones d'edition 4£=0,1,2,... et conserver dans La
mémoine Lous Les progrhammes Lapés.

EXERCICE 4.2 Modifien Le proghamme de machine a écrnirne pour que La Zouche
= Qééace L'éecnan.

2éme partie:

Numeérisé par micromusee.ch

APPELS PRINCIPAUX DU SYSTEME SMAKY6

DE MISE EN PAGE ET AFFICHAGE DE NOMBRES

/. APPELS
?SPACE = 21347
?TAB = 50747
?RETURN = 21747
?DEL = B4347
?AFBIN = 34347
?AFOCA = 35347
?AFHEX = 34747
?AFOHL = 35747
?AFXHL = 54747
Exemple 7.1

. TLITLE

. PROC

R oi=ln

AFCODE: LOAD
W

W
. W
JUnP
. END

AF2:

"Affiche" un espace (ne modifie pas A)

"Affiche" un tabulateur (passeen colonne modulo 8.)

Passe au début de 1a ligne suivante (ne modifie pas A)

Efface le précédent caractére (comme la touche DELETE)

Affiche le contenu de A en binaire |

Affiche le contenu de A en octal (en faitle CarryetAcad9bits)

Affiche le contenu de A en BCD ou hexadécimal

Affiche le contenu de HL en octal

Affiche le contenu de HL en BCD ou hexa

touche

AFCODE ;AZ 23 mai 1880
780 |
SMB |
C,# NLI/Z ;moitié de 1'écran initialisee | Aff.gn1| ‘
2TOIS blnﬁlre |
?GETCAR .
?DICAR, ?SPACE, ?AFOCA, 7?SPACE, ?AFHEX, ?SPACE, ?AFBIN
AF 2
AFCODE

FXERCICE 7.1 Ecnine en'assembleurn SMé6 Le programme qul A'ecut

en

10 FOR MN=1 TO 10
20 PRINT N, 2 *N,

30 NEXT N
40 STOP

BASIC: en PASCAL:

PROGRAM TABLEAU (ECRAN,QOUTPUT)
VAR NBRE: INTEGER;
BEGIN

FOR NBR1:=1 TO 10
DO WRITELN (NBRE,Z2*NBRE,3*NBRE);

END.

3*N

Numeérisé par micromusee.ch

8. APPELS DE LECTURE DE NOMBRES

?INOC = 33747 Attend un nombre octal et construit sa valeur binaire

dans HL. Une touche non chiffre termine 1'appel, qui

revient avec le nombre dans HL, et la derniére touche
(terminateur) dans-A.

?INDEC = 32747 Attend un nombre décimal et construit sa valeur BCD
dans HL.
Seuls les 4 derniers chiffres sont conservés.
?INHEX = 33347 Attend un nombre hexadécimal et construit sa valeur

binaire dans HL. Les touches A...F sont considérées
comme des chiffres

EXEMPLE 8.1 Afficher le caractere ASCII correspondant & un code tapé en octal au
clavier :

. TITLE AFCODE ;MA 17.3.80
.PROC 780

. REF SM6

: code tapeé en octal

AFCODz: LOAD C,# NLI

an ?IDIS
AFCO0Z2: W ?INOC, 7?TAB :INOC donne le nombre dans HL
;H n’a pas de signification
LOAD A, L - +DICAR veut le caractere dans A
) ?DICAR, ?RETURN

JUMP AFCOZ
. END AFCODE

Exencice §.1. Ecnine Le programme qui attend un nqmbne déecumal de 4
digits et L'agfiche en binaine 16 bits.

Exencice §.2. Eenine Le méme programme qu'avant, mals séparer chaque
groupe de 4 bits par un espace. | |
Indiecation: décalen Le contenu de HL bit pan bit dans

Le Cavy avee £'imstruction ADD HL,HL. St Le Canry
vaut §, affichen 'f; 5'4L vaut 1, afgicher 'I.
Tous Les 4 bits, afgicher un espace.

Numeérisé par micromusee.ch

9. REMARQUE IMPORTANTE

Une.1nstructioq,.un appe]3 une partie de programme ont un effet sur les
registres, positions mémoire et périphériques qui doivent &tre présents a

1'esprit, et qu'il faut bien documenter dés que la fonction n'est pas
courante.

Exemple 9.1.
Instruction ADD A,B

;in A,B opérandes (8 bits)

;out A résultat (8 bits)

; CS (C=1) carry set si dépassement de capacité
; EQ (Z=1) si résultat nul

: SS (S=1) si bit de poids fort & un

; mod -, A

Exemple 9.2.
Appel 2 INOC

;in - (touches du clavier)

;out HL nombre tapé

; A derniere touche non chiffre

; C nombre de chiffres tapeés

; EQ si le nombre est vide (pas de touche chiffre tapée)

; mod F, A, B, C, HL, écran

Exemple 9.3.
Programme AFCODE
sin - (touches du clavier)
;out dcran effacé, codes tapés et caractéres correspondants alignes

s mod F, A, B, C, HL, écran

Exercice 9.1. Documenter avee in/out/mod La parntie de programme qui
aifiche HL en binairne avec des thanches de 4 bits, telle
qu'elle a étée écrnite dans L'exencice 8.1,

10. APPELS D'AFFICHAGE DE TEXTE

On peut afficher un texte préparé en mémoire par 1'appel ?TEXT, suivi
de 1'adresse (étiquette) du texte en mémoire. Les textes sont déclares
soit au début, soit @ Ta fin du programme.

Numeérisé par micromusee.ch

Exemple 10.1

TX: LOAD C,# NLI Init écran
W ?IDIS o
W ?TEXT, TEX1 VERAZ:
W 2 INOC 1er nombre
W ?TEXT, TEX2
TRAP -
TEX1: .ASCIZ "DONNEZ MOI UN NOMBRE:" M -

TEX2: +ASCIZ "<CR>MERCIKCR>"

txemple 10.2 On veut vérifier 1'ins-

truction d'addition ? = ? K
ADD A,D
Organigramme; ERROR:
. . . Addition Erreur
Affichage
.TITLE VERADD resultats. .|
et fani
.PROC 780 S
. REF SMB

;sverification de 1'addition

VERADD: LOAD C,# NLI
W 7IDIS
VERAZ: an ?TEXT, ADTEX1, ?7INOC
COMP A,7# '+ ;seul le + est reconnu comme termi-
JUMP ,NE ERROR ynateur du 1er nombre
LOAD D, L ;1le 1er opérande est sauvé dans DO,
.Vl ?INGC yregistre non détruit par les appels
COMP A # '= S
JUMP,NE ERROR :seul = est accepté comme terminateur
;du Z2e nombre
LOAD A,L ;2eme opérande dans A
ADD A,D ;addition
bl ?AFOCA saffichage du résultat dans A
PUSH AF s1’instruction LOAD A,F n'existant pas
POP BC ;i1 faut faire un détour par la pile en
LOAD A,C mémoire |
7 ?TEXT,ADTEX2, ?AFBIN, ?RETURN j;affichage des flags en binaire

JUMP VERAZ

ERROR: .V ?TEAT, ADTEX3
JUMP VERAZ

ADTEX1: .ASCIZ " Tapez l'opération : "
ADTEXZ: .ASCIZ " Fanions SZ----- E ¢ "
ADTEAXS: .ASCIZ " Tapez le bon terminateur: <CR)"

. END VERADD
10

Numeérisé par micromusee.ch
Remarque

L'appel ?DITEX peutl ausst etrne wlilisé pour affichen des textes, mais LiL est

moins pratique pour un Texte simple, can L faut préparern L'adresse du Lexte
dans HL, et Le registrne HL est modifLe.

PUSH HL |

LOAD HL, # ADTEX1 . \

W >DITEX est équivalent a W ?TEXT., ADTEX1
POP HL

Exercice 10.1. Eenine un proghamme qui attend une séquence de 3 fouches
prnédéfinies, par exemple PTQ et affiche dans ce cas
sewlement "votre cofsne est ouvert”, et dans Les autnes
cas "{'appelle La police".

11. BRUITAGES

L appel 7?PLAY est semblable & 1'appel ?DITEX, mais au lieu d'afficher le

texte poinFé par HL, 11 Joue des codes, les mots mémoire é&tant interprétés
de facon simplifiée :

~PERIODE ADUREE

(nbre de
périodes)
Exemple 11.1
.TITLE MUS
. PROC 280
.REF SM6
MUS: LOAD HL, # MOR ;adresse du morceau
an ?PLAY
MU2: JUMP MUZ ;attente; taper NMI pour retourner & SMILE
MOR: .B DO, RE, DO, SIL, MI, SOL
B ? :un zéro doit terminer le morceau
.END MUS
Rema/ique)

Les appels sont des mots de 16 bits qui sont Ainterpretes par Le processeur

commie des appels de sous-programme. .V doil etrhe wtilise pour mettre dans Le
programme un mot de 16 bits. Les notes sont par contre des mois de § bits,

.B doift etne utilise dans ce cas.

ASCTIZ "TRUC" est une facilité pour écrire:

B . "B, Y, L, B (un zéro termine le mot, aucune lettre
n'a le code A)

11

Numeérisé par micromusee.ch

h'appil ‘BEEP permet de ne jouer qu'une note, dont le code a été préparé
ans A.

Exemple 11.2. Simulation d'un clavecin; les touches 0-1-2 jouent DO-RE-MI.

. TITLE CLAVECIN

.PROC 780
. REF SMB CLAVECIN:
;clavecin tres simplifié ﬁgzsggie
touche
CLAVECIN: .W ?GETCAR
COMP A#'D - JDo:
JUMP,EQ JDO ? touche @ ? :
COMP A,# "1 '
JUMP,EQ JRE JRE;
COMP A,#'2 ? touche 1 ?}—e{note RE
JUMP,EQ JMI |
JUMP CLAVECIN IMI:
? touche 2 ?}—s={note MI
J00: LOAD A,# DO 1
N ?BEEP

© JUMP CLAVECIN

JRE : LOAD A, # RE
W g Saly
JUMP CLAVECIN CLAVECI
Attente
T - LOAD A,# MI touche
AT s BEEP

JUMP CLAVECIN

Prép. DO

e e ————

? Touche 8 ?

. END CLAVECIN

Ce programme peut étre-allégé

Exemple 11.3. [:::___f:::::]

CLAVECIN: .Ul ?GETCAR ?_Touche 1 1 o
LOAD B,# DO
cor P A#'D
UMP,EQ CLAZ2
LUAD B, # RE
comP A, # ' R
JUMP,EQ CLAZ 2 Touche 2 ?

LOAD B, # MI " -“ .
COMP A, # '2 Ae: v

JUMP,NE CLAVECIN Joue la note
plnnurrv]
CLAZ: LOAD A,B
Wl ?BEEP
JUMP CLAVECIN T

12

Numeérisé par micromusee.ch

Ce programme est encore trés lourd. I1 peut &tre simplifié en utilisant

1'appel 7JUMPCAR = 30747, qui permet de préparer une table de correspon-

dance entre les touches et les adresses de programme a exécuter chaque
fois.

Exemple 11.4,

CLAVECIN: .W ?GETCAR CLAVECIN: ¢
LOAD DE,# TABLE _
W ?JUMPCAR ,
JUMP CLAVECIN ;autres touches
s ignorees Init.fpointeur
JOO: LOAD A,# DO table
JD2: W ?BEEP

JUMP CLAVECIN

Saut selon code

JRE: LOAD A,# RE 0) 1 >
?BEEP sba
W : }JUP’IP JD2
JUMP CLAVECIN JD0:| JRE:| JMI:
00
JM1: LOAD A,# MI
W ?BEEP
MP JDZ
JUMP CLAVECIN .}'MJ
TABLE : . BW '@, JDO0 son écrit .BW car la table contient successivement
.BW '41.JRE ;;un byte (le code de la touche) et un word (1'a-
. BW '2.JMI :;dresse de la routine)

B J%)

\

L'appel ?BUZZ fait un buzz unique et ne modifie aucun registre. Le code
ASCII BEL=7 a le méme effet. On peut donc 1'introduire dans un texte, par exemple

pour attirer 1'attention de 1'utilisateur au moment de Tui demander un nombre:

Exemple 11.5

TEA1: .ASCIZ "1er NOMBRE?" TEX1: .ASCIZ "1er NOMBRE?<BELL"

13

Numeérisé par micromusee.ch

12. APPELS ARITHMETIQUES

Quelques opérations non disponibles sous forme d'instructions du 780
ont été ajoutées comme appels.

?BINBCD ;in HL . HL 00000100300000000 nore binaire [210]

= 52347 |

;mod F A HL

?BCDBIN ;in HL HL ‘\001 nbre BCD (9889)

= 52747 B HL nbre binaire (23417)
;mod HL
?COMPHLDE ;in HL OE e[~ e[P]
= 23 ;out Carry,EQ,Sign " m Egi}l:lg :l :[I:C gg }[1ogicall
:mod FE EQ=ZS s:?. HLfDE
SS s1 HL<DE (arith)

?MUL ;in HL HL| Terme additif p DE| Multiplicande |*BC|Multiplicateur
27747 |
jout HLDE HLDE Al =08

smed F A DE HL

DI s L oe

= 30347 . .
et O] _mgeoges | IW F[__Id A[-0sicatry=o0
.mod F A DE HL CS si erreur (dépassement

de capacité)

Exemple 12.1. Vérification des routines de conversion.

.TITLE VERCONV
.PROC Z80
. REF SiM6

sconvertit un nombre

VERCONV: LOAD C,# NLI
. W T IDIS

VERZ: Yl ?INDEC, ?TAB, ?BCDBIN, ?AFOHL, ?TAB, ?BINBCD, ?7AFXHL, ?RETURN
JUMP VERZ

. END VERCONV

Numeérisé par micromusee.ch

Exemple 12.2. Soustraction de deux nombres positifs, résultat donné en
complément a 2.

. TITLE SOUSTRACTION
.PROC 280
.REF SM6

SOUS: LOAD C,# NLI

W ?IDIS
SOUZ2: W ?INQC
EX HL , DE ; sauvetage ler opérande dans DE
W ?INOC
EX HL , DE séchange pour avoir le ler opérande dans HL
OR A,A L . . . o e
SUBC HL . DE ;SUB HL,DE (instruction qui n'existe malheureusement pas)
W ?SPACE, ?AFOHL ., ?RETURN
JUMP SOU?2
.END SOUS

Exécuter le programme avec une dizaine de paires de valeurs trés
différentes.

Exemple 12.3. Soustraction de 2 nombres positifs, a-b, résultat signé

SOUS: LUrJ C,# NLI

a ?21DIS r—‘
SOuUZ: W 2 INOC
EX HL , DE ; ler opérateur DE S0U2:
XY ?INOC, ?SPACE ;2e opérateur HL ANF_nenine &
EX HL , DE ;permuter
W ?COMPHLDE :ler op. < 2e op. 7| -
JUMP.HS SOU4
EX HL , DE ;81 oui, permuter
LOAD A,#'- ;afficher le -
Y »DICAR | ? ayb)
SQU4: CR A,A ;si non Permuter
SUBC HL , DE
.V 7AFOHL, ?RETURN
juMP 30U2 A\fficher-

SOU4: ———

Soust ral_r_:_l
Afficher le l

resultat 3

e - - s e e . —.|

Exécuter le programme avec une dizaine
de valeurs trés différentes.

Numeérisé par micromusee.ch

Exemple 12.4. Calculatrice octale 4 opérations, nombre
entiers, en notation polonaise: a b +

Initialisation
. TITLE CALCO y PP 780913 CALZ:
.PROC 280
.REF SMB ler nombre

CALC: LOAD C,# NLI

W 21DIS SSUVELEgS
nombre

CALZ: W ?INOC, ?SPACE ; ler nombre
PUSH HL ; sauvetage sur lapile
W ?INGC ;2e nombre et opérateur l Zeme nombre
LOAD DE, # TABLE |
W ?JUMPCAR
l? opérateur 7
CALS4: W PTEXT, TX1 + = X /] evbe] L
JUMP CALZ EnéE]
TABLE: .BW '+, DOPLUS Dpératioq___ _T:
. BW '-, DOMINUS -
. Bl '+, DOMUL = hF2;
. BY '/, DODIV ? Dép. capacite 7
n s P

l Affichage l
;on entre avec le ler argument sur la pile, le 2e dans HL =

;on sort avec le resultat dans HL et CS s'il y a dépassement de capacité

COPLUS: PCP UE
ALD HL , DE
JUNP AFFICHE

DOMINUS:PCP OE
EX mlL, UE ;permuter pour soustraire ler - 2eme
OR A, A

SUBC HL L DE }remplace 1"instruction manquante SUB HL,DE

JUMP AFF ICHEC

DOMuL: LOAD 9, ;remplace l'instruction LOAD BC,HL

LOAD C,L

PCOP CE

LOAD HL, # O

o ¥ 71MUL

EX HL, DE

ESAD 2'2 ;remplace 1'instruction TEST DE et met le carry a
JUMP,EQ AFFICHE

SETC ;met de carry & 1 (dépassement de capacité)

JUMP AFFICHE

16

Numeérisé par micromusee.ch

DODIV: LOAD B,H sdiviseur
LOAD s L.
LLOAD HL,# O
POP DE ;dividende
W DIV
EX HL, DE ;quotient dans HL pour affichage ultérieur

AFFICHE: JUMP,CS AFF2

W ¢AFOHL, ?RETURN
JUMP CALZ
AFF2: W ?TEXT, TX2

JUMP CALZ

1Al .ASCIZ * Je ne connais pas cette opération «<CR>"
TX2: .ASCIZ " Dépassement de capacité <CR>”
. END CALC

Exencice 12.1. Modifcen Le proghamme précédent poun agfichen Le neste de
La division précédé de "Reste:"

Exerccce 12.2. Modifiern Le programme précédent pour taper L'opération
en notation algebrique usuelle a + b =
- Exercace 12.7. Ecnire Le programme caleulatrnice 2 ou 4 opérations en décimal

(nombres entiens).
Indication: convertin en binairne pourn effectuen Les caleuls.

17

Numeérisé par micromusee.ch

13. APPELS DE MISE EN PAGE

Avec 7IDIS, Tes textes commencent toujours au haut de 1'écran. I] est

possible de commencer n'importe ol en préparant les coordonnées de début
dans HL et en utilisant 1'appel ?SETCUR.

L appel ?GETCUR permet de savoir ol est le pointeur (curseur),

Exemple 13.1. On veut afficher un * au centre de]'Gcran.

. TITLE ETOILE
.PROC 280
.REF SMB

CENTRE = (NCAR/2])* XX+ (NLI/2)*YY

ETOILE: LOAD C,# NLI
W ¢101S

LOAD HL,# CENTRE

. W ?SETCUR

LOAD A,#'*

o U ?DICAR

TRAP sretourne a SMILE, qui reprend le contrdle
. END ETOILE ;@ la prochaine touche tapée

Exemple 13.2. On veut que Te texte tapé au clavier soit affiché verticalement.

.TITLE VERIT
.PRCC Z80
. REF S5

s parametres de mise en page |
PREMCAR= 1*XA + &*YY ; 2e colonne, 5Se ligne

VERT: LOAD C,# L1

. Vi ?IDIS -
LOAD HL, # PREMCAR ;pointeur caractere
VER1 : .V 7SETCUR
VERZ: _n ?GETCAR, ?DICAR j;attente clavier et écho
INC H
N 7SETCUR s JUMP VER1 plus court
JUMP VERZ
. END VERT

18

Numeérisé par micromusee.ch

Exemple 13.3. Variante du programme précédent, dans laquelle seuls les
cmffres., doivent &tre affichés verticalement (en fait, pour
simplifier, tous les caractéres dont le code ASCII est inférieur

d celui de la lettre A). VAR
VAR LOAD C. 4 NLT Initialisation
W 2 IDIS ecran, pointeurs
LOAD HL, # PREMCAR
W ?SETCUR
Attente clavier
VARZ: .W ?GETCAR
COMP A,# 'A schiffre ou lettre !
JUMP,LO VAR4) Touche de "
A ?DICAR s lettre code < A
JUMP VARZ
| Incrémentation
VAR4: PUSH AF schiffre | pointeur vertic.

W ?GETCUR
POP AF VARA4

INC H l Echo l

W ¢SETCUR, ?DICAR
JUMP VARZ

Quesiion: ALes nombres 3'afgichent en failf en oblique.
Pourquos? Coruigen Le phoghamme.

14. ATTENTE

L'appel .W 7DELAY,ATT permet de ralentir 1'exécution en créant une attente
de ATT millisecondes (ATT £65000.)

Eexmple 14.1. Le programme doit imiter le tic-tac d'une pendule.

.TITLE TICTAC

.PROC 780
.BEF Si6
TIC = 11
TAC = 21
AT1 = 500 L
AT2 = 540
TICTAC: .Y 70ELAY, AT &
LOAD A,# TIC Attente
o ¥ ?BEEP

Wl ?0DELAY,ATZ
W ?BEEP '
JumMp TICTAC

. END TICTAC

Exencice 14.1. Ecnine Le programme qui déplace un caracténe hondzontalement
sun L'écnan, en Le faisant nebondin sun Les bonds (wCclosen
?SETCURSOR, 7SPACE, 7DICAR, ?DELAY). 19

Numeérisé par micromusee.ch

Jéme partie. INSTRUCTIONS PRINCIPALES DU PROCESSEUR Z80

15. INSTRUCTIONS DE TRANSFERT

Ces instructions ne modifient pas les fanions.

A # VAL Exemples:
A
E B LOAD E, # NBRE1 charge dans E la valeur NBRE1
> C déclarée au début du programme
LOAD £) g LOAD D,A chargement de D par le contenu de A
E H LOAD (HL),C chargement de la position mémoire
aL L dont 1l'adresse est dans HL par le
() (HL) contenu de C
(BL)
LOAD A 4 <(DE) LOAD A, COUNT chargement de A par le contenu de
[{BC) (HL) la position mémoire d’'étiquette
COUNT, déeclarée par
LOAD 1(DE) s A COUNT: .BLKB 1 ou |
(ﬁHL) COUNT = 42000 (position mémoire
g . {ADVAL } permise, visible sur 1'écran)
) $ADPER LOAD A, $CLA lecture directe du périph, clavi
L OAD {ADVAL }, A périph, clavier
$ADPER
| OAD -!gg # VAL LOAD SAVEHL , HL transfert dans la position SAVEHL du
m ADVAL contenu de HL.
(H _ A la fin du programme, on & pAar
BC exemple: SAV .
LOAD ADVAL , < pE .t S
HL
EX {HL,DE} Instruction d'échange de HL de DE
AF AF
DUSH BC POP BC Sauvetage d'une paire de registres sur la pile.
DE SE Récupération dans une paire de registres du sommet de
HL la pile.

Succédanés a des instructions manquantes:

LOAD HL,DE {LOAD E’E

LOAD
PUSH BC
PUSH AF PUSH AF
LOAD A,F POP BC POP BC
LOAD A,C LOAD A,C
POP BC

modifie B et C

an plus de A Ne modifie que A

PUSH HL PUSH HL ”
PUSH BC LOAD H.B H BC
,BC ,
- e POP HL LOAD L.C {EX (SP),HL
POP BC POP BC POP BC

16,8 ps de temps d'exécution 11,U/ps 20

Numeérisé par micromusee.ch

16. INSTRUCTIONS ARITHMETIQUES 8 BITS

Ces instructions modifient les fanions C,Z,S,V.

ADD # VAL Exemples:
ADDC A
SUR B ADDC A, # 3 ajoute @ A @ ou 1 selon la valeur
SUBC C du Carry.
A, D
COMP £ COMP A, (HL) compare le contenu de A avec le
AND ¥ contenu de la position mémoire dont
OR 1'adresse est dans HL
XOR .
(HL)
CPL A Complément @ 1 de A
NEG A Complément & 2 de A
DA A Correction BCD aprés une opération 8 bats sur A
{gti]ise.]e Carry et Te Carry auxiliaire généré lors de
operation 8 bits)
A
E INC (HL) ajoute 1 au contenu de la position
mémoire dont l'adresse est dans HL
INC D -
DEC E
H
L
(HL)
RL H{< 3} . Rotation-a gauche
e e L : . .
RLC A 3 Rotation @ gauche a travers le Carry
SLC g [<= "}« Décalage & gauche
RR- - F{ =1 Rotation & droite
RRC t‘ (-L_=_14 Rotation & droite & travers le Carry
SRC- (HL) Décalage & droite (:2 nombre Togique)

ASR E—J Décalage & droite (:2 nombre arithmétique)

Succédanés a des instructions manquantes:

LOAD A.,B LOAD A.# -1
¢c?L B CPL A SUB A.B
LOAD B,A ?
PUSH AF
LOAD A,B XOR A,A XOR ALA
NEG B NEG A SUuB A,B SUB A,B
LOAD B,A LOAD B,A LOAD B,A
POP AF
modifient A et F
en plus de B ne modifie que B

21

Numeérisé par micromusee.ch

17. INSTRUCTIONS ARITHMETIQUES 16 BITS

Ces instructions modifient les fanions C,Z,S,V d'une maniére qui n'est pas
toujours logique.

Exemples:
ADD 7 BC
ADDC HL, DE ADD HL,HL double le contenu de HL
SUBC HL (modifie C, mais pas Z,S8,V)
ADDC HL,HL double le contenu de HL et
ajoute le Carry
(modifie C,Z,S,V)
INC 51 .
DEC}' DE ne modifient pas du tout les fanions
HL |

Succédanés a des instructions manquantes:

OR A,A .
B HL,DE ’
SU {SUBC HL .DE soustraction de HL et DE
SLC HL -{ADD HL ,HL décalage a gauche de HL (double)
SRC HL SRC H décalage a Qroite de HL (divise par 2 les
RRC L nombres logiques)
aASR HI ASR H décalage é.droitg de HL (divise par 2 les
RRC L nombres arithmétiques)
EX HL,DE LOAD A,L
LOAD HL,# O CPL A . ’ .
NEG HL ’
R A.A LOAD L.A complément a 2 de HL
SUBC HL,DE LOAD A,H
EX HL,DE CPL A
o LOAD H,A -
modifie F INC HL
DA HL impossible: il faut faire toutes les opérations

dans A et corriger au fur @ @ mesure.

Exemple 17.1. Routine de multiplication de E(8 bits) par A(8 bits),
résultat dans HL (16 bits).

D = A
: . v 43 M ;N

;in E multiplicande, A multiplicateur =] * -.
;out HL produit L O W
;s mod. F,A,B,0,E,HL A
MULEA: LOAD D,# B ;DE multiplicande 16 bits

LOAD HL,# ¥ ;produit partiel initial

LOAD B,# 6.
MULZ: TERT A: ;bit de poilds faible de A

JUMP,EQ MUL4

ADD HL , OE sadd. du multiplicande au produit porticl
i ;tg g E:SLC DE décalage de DE (double)

RR A ;décalage de A

DECJ,NE B,MULZ 2¢

RET

Numeérisé par micromusee.ch

Variante: Tles instructions TEST A:p
JUMP,EQ MULA4

RR A

sont en général remb]acées par RR A
JUMP,CC MULA4

Programme complet permettant le test de la routine:

TITLE MULT
.PROC Z80
. REF SME

;routine de multiplication et prog. de test
151 LOAD C,# NLI

W ?IDIS

TEZ2: W ?INOC, ?SPACE
LOAD E,L smultiplicande
W ?INOC, ?SPACE
LOAD A,L smultiplicateur
CALL MULEA |
W AFOHL, ?RETURN ;résultat dans HL
JUMP 1EZ

sroutine ...

MULEA:
. END TEST

Exencice 17.1. Modifien £'exemple 17.1 pour effectuer Le prodult en
commencant par Les podids forts de A, avec decalage a

drnoite de DE.

Exemple 17.2. Routine de multiplication de HL (16 bits) par A (8 bits),
résultat dans AHL (24 bits).

s292?2??2°?2?27? - .
s 3 ?MULHLA MUL HL, A, AHL
s P0?2?2°0°?°?2°?2? - "y

il
$3 in HL mnmltiplicande, A multiplicateur

;s sout AHL, produit 24 bits
; smod F, A, HL

MULHLA: PUSH BC

PUSH DE
LOAD B,#8. ;décompteur de cycles de multiplication
EX HL,DE ;multiplicande dans DE
LOAD HL,#® ;produit partiel initial
MUL1: ADD HL,HL ;décalage du produit partiel
?ﬁﬁP CCAMULZ ;décalage du poids fort du multiplicateur dans le Carry
ADD HL,DE ;addition si ce bit vaut 1
ADDC A,#0 ;débordement éventuel sauvé dans A
MUL2: DECJ,NE B,MUL1 :répéter 8 fois
POP DE
POP BC
RET

Exencice 17.2. Ecnine et testen La noutine de division HL:A

Numeérisé par micromusee.ch

18. INSTRUCTIONS DE TEST

Elles permettent de savoir si un bit, un octet (byte), un sedet (word) est
égal a zéro ou non.

Test de bit:
A
B Exemples:
C
TEST D RANG BSIGNE = 7
E -
H TEST H:BSIGNE charge le fanion Z avec la
L, valeur du bit de poids fort
(HL) de H (si BSIGNE = 7)
TEST (HL):P charge 7 avec la valeur du bit de

poids faible de la position
mémoire dont 1l'adresse est dans
HL

Succédanés aux instructions de test d'octets et sedets:

TEST A {OR A,A [ADD A,#P Z=1 (EQ) s1 A est nu
LOAD A, , .
TEST HL '§0R. A E Z=1 (EQ) si HL est nul (le mot (ou les deux moitiés du mot)

ne peut etre nul que si Te nombre
modifie A total est nul)

24

Numeérisé par micromusee.ch

19. INSTRUCTIONS DE SAUT ET D'APPEL DE ROUTINES

JUMP Exemple:
CALL} 2l
ADD A,B A,B positifs (nombres logiques)
£Q JUMP,CS OVERFLOW saut si A+B»28
NE ADD A,B A,B arithmétiques
¢S LO JUMP,VS OVERFLOW saut si [A1+1Bl > 27
JUMP Z
») CC HS ETIQ
CALL M
SS MI COMP A,B A,B positifs
SC PL JUMP,LO PLUPETIT saut si A<B (nbres lagiques)
VS
Ve COMP A,B A,B arithmétiques

JUMP,MI PLUSPETIT saut si A<B

DEC BC

LOAD A,B . ,
’ ; C,LOOP (modifie A!))

R A C DECJ,NE B

JUMP,NE LOOP

Exemple 19.1.

» SOUS programme pour ajouter 1 dans le registre 24 bits CBA

;in CBA
;out CBA, ER si CBA=0
smod F,CBA

INCCDA:

H
<
- ()
™

A = C0 - C0
< M 2
) - (O

<~ =
m m

i
—t

Numeérisé par micromusee.ch

20. INSTRUCTIONS DE MODIFICATION DE BITS

Exemple:
2 FLAGT = 3
SET c SET D:FLAG1 met & zéro le bit 2° de D si FLAG1=3
CLR} D -+ RANG pourrait s'écrire LOAD D:FLAG1,# 1
E
(HL)
SETC Met le Carry @ 1 (SET C voudrait dire met & 1 le registre C)
CPLC Complémente (inverse) le Carry

Succédanés aux instructions manquantes:

clear le Carry SETC -
CLRC { OR A,A (modifie S.Z,V en plus) {CPLC ne modifient que le Carry

On peut modifier un ou plusieurs bits avec les opérations logiques ET, OU.

OR A,# 200 est équivalent @ ser a:7 OR A,# 360 est équivalent @ SET 24:(7,6,5,4)
AND A,# 177 est équivalent @ czr a:7 AND A,# 17 est équivalent & cCLR A:(7,6,5,4)

Certains processeurs (PDP11 en particulier) ont les instructions

BIS (bit set) et BIC (bit clear)

BIS A,B { OR A,B les bitsde A correspondant aux bits de Bqui valent 1 sont mis a |

LOAD CL,A CPL A
BIC A.B LOAD A,B ‘{OR A,B les bits de A correspondant aux bits
o CPL A CPL A de B qui valent 1 sont mis & zéro
LAND A,C

L'instruction BII (bit inverse) est réalisée par 1'instruction XOR (ou exclusif)

Exemple:

"—'—'——'—" /
A |] 10101 10j : W
2> T o071 @] 1 0
B (10001000 5 _—
(o pus) \\\'P_B _L?f\l 1 0 1 [(} -

L'instruction CLR peut etre réalisée avec un XOR A,A (1 byte) ou
LOAD A,#P8 (2 bytes).

N

20

Numeérisé par micromusee.ch

4e partie: TECHNIQUE DE PROGRAMMATION

21. REGISTRES EN MEMOIRE

Lorsque le nombre de registres & disposition est insuffisant, des positions
mémoire sont utilisées comme registres supplémentaires. Le Z80 est toutefois
un processeur tres pauvre pour travailler directement avec 1a mémoire. Les
transferts 8 bits ne peuvent se faire qu'avec A, les transferts 16 bits avec
HL, DE, BC. Ces instructions de transfert prennent beaucoup de place.

Les positions mémoire utilisées comme registres sont caractérisées par une
étiquette et sont définies par un .B ou .W.

Tgutes les opérations doivent &tre exécutées dans les registres, et les posi-
tions mémoire ne peuvent @tre utilisées que pour dauver provisoirement une

vg]gur. Par exemple, Tes compteurs ou décompteurs de boucle sont douvent réa-
11sés en mémoire.

LOAD A,#7 CINITIAL

LOAD COUNT, A sinitialisation du compteur
LOOP:

LOAD A, COUNT

DEC A }_ s DEC COUNT

LOAD COUNT, A . modifie A

JUMP,NE LOOP
COUNT: .B % ; réserve un byte en mémoire

; (@ la fin du programme)
;et 1'initialise @ la valeur §

La pile est une zone mémoire particuliére trés pratique pour sauver les registres.
L'adresse est implicite; il n'est pas nécessaire de la déclarer.

L'exemple précédent peut s'écrire comme suit si le compteur est sur la pile.

LOAD A,7 CINITIAL

PUSH AF
LOOP: i
PCP AF
uel A } ‘modifie A
PLUSH AF

JuP,NE LOOP

L'utilisation de la pile nécessite des précautions, car il ne faut pas se
tromper dans 1'ordre de remplissage et vidage, et surtout ne jamais avoir
dans une routine ou une boucle plus de PUSH que de POP: Ta pile remplit

alors toute la mémoire, jusqu'a destruction du programme, si 1'on appelle

souvent la routine.

27

Numeérisé par micromusee.ch

22. TABLEAUX EN MEMOIRE

Une zone mémoire de m bytes a partir de 1'adresse TABL peut &tre réservée
avec l1'instruction

TABL: .BLKE m (.Block Byte)

51 cetle zone doit recevoir des mots de 16 bits, on utilise la pseudo-instruction
.BLKW"

Pour trajter des tableaux de nombres, les registres 16 bits du Z80 sont utilisés
comme pointeurs dans ces tableaux (ils contiennent des adresses de nombres dans

les tableaux) et le registre A est utilisé pour les adjonctions. ey aos'oc——

Exemple 22.1. Addition de 5 nombres entiers 8 bits préparés dans un tableau.
Le résultat doit etre placé en 6e position du tableau.

ADTAB: LOAD HL, # TABLE ;init. pointeur table
LOAD B,# LONGTA ;init. décompteur boucle
XOR A, A ;A=0, carry = g TABLE:
|
ADT2: ADD A, (HL) ;add. la valeur pointée 2 LONGTA
INC HL ? |
DECJ,NE B,ADT2 ,
RESULTAT:
LCAD (HL),A ; sauvetage du résultat
LONGTA = S

TABLE: .BLKB LONGTA
} ou TABLE: .BLKB LONGTA+1

RESULTAT: .BLKB 1

Le contenu du tableau a &té préparé ou construit par un autre programme.

Le tableau peut étre initialisé n'importe olu dans la mémoire. L'habitude est

de regrouper tous les tableaux dans une zone commune, en fin de programme.

Avec le SMAKY6, il est intéressant de placer ces tableaux dans 1'&cran, qui est
une zone mémoire affichée en permanence. Si les 8. premiéres lignes sont réservées
pour les dialogues avec 1'utilisateur, Ta mémoire a disposition pour les tableaux
va de 57000 (debut de la Béme 11gne) a 42377 (coin inférieur droit de 1'&cran).

I1 v a 100=64. bytes par ligne d'écran. L'adresse des débuts de table doit &tre

définie par un = . \ gaL@u&_‘_’z_oo R SALPHA + C('FF.

Exemple 22.2. Programme complet pour la préparation d'un tableau de nombres,

le calcul du total et 1'affichage du résultat.
e 1L LLE TABLEAQ

.PROC Z&0
. REF SM6
sdéfinitions propres au programne
LICNE = 8.
TABLE = SALPHA+16.*NCAR ;tableau au début de la 16eme ligne écran
LONGTA = 5 stableau de 5 bytes

; programme

TABLEAU: BAC—C57 iCL
—Fnro . ;efface tout l'écran
LOAD C,# LIGNE

W 7IDIS sinitialise 8. lignes seulement pour la suite

yremplissage tableau

LOAD
LOAD

TAB2: PUSH
W
POP
LOAD
LOAD
INC

DECJ,NE

;calcul total

LOAD

LOAD

XOR
TAB4: ADD.
INC
DECJ, NE
LLOAD

OE, # TABLE
B,# LONGTA

BC
?INOC,
BC
A,L
(DE),A
DE

B, TABZ

?SPACE

HL, # TABLE
B,# LONGTA
A,A

A, (HL)
HL

B, TAB4
(HL),A

;atfichage du résultat

LOAD
LOAD
W

. END
Exencsce 22.1.

Exenccce 22.72.

HL, # TABLE+LONGTA

A, (HL)
?RETURN,

TABLEAU

*AFOCA,

Numeérisé par micromusee.ch

;Ne pas utiliser HL, qui va @tre modifié

spar ?INQOC

?RETURN

Modifien L'exemple précédent poun détecten un dépaééement
de capacite et/ou afpichern un resultat corrnect 16 bits.

Definin 2 Zableaux TABI =41000 et TABZ = 41200.

Remplin ces ftableaux avec des codes ASCIT (appel

?GETCAR).

Caleulen La somme byte a byfte de ces 2 fableaux dans

TAB3 = 41400.

L' "organigramme” pour cet exercice peut s'écrire

Initialisation écran

Init. ler tableau et cohpteur
Remplissage avec des codes ASCII
Init Ze tableau et compteur

Remplissage 2e tableau

Init. pointeur ler, Z2e tableau et tableau des réesultats

Addition ,
Affichage éventuel en clair des nombres contenus dans le tableau des

resultats

29

Numeérisé par micromusee.ch

23. TABLE DE CONVERSION

A une valeur connue correspond souvent une autre valeur que le programme
doit déterminer. Si le calcul est trop long ou trop compliqué, une table
a deux entrées permet d'obtenir les valeurs cherchées.

Le cas le plus simple se trouve Torsque les valeurs connues sont comprises

entre 0 et 255.
est défini en mémoire avec un

Exemple 23.1.

SINUS:

SINZ:

SING:

SING:

(entiers 8 bits). Le tableau des valeurs correspondantes
.B (byte) ou .W (word).

Dessiner sur 1'@cran des caractéres faisant apparaitre une demi-

sinusoide.

Les 11gnes By b wus I8 correspondent aux valeurs des sinus

de 10° en 100 La table de sinus est @ définir de 100 en 10©
également.

. TITLE SINUS

; table prop.

TASIN:

.PROC Z80
« REF SME6
LOAD C,# NLI
W ?IDIS
LOAD C,# 18. ;compteur de ligne
LOAD D,# D sangle initial .
LOAD - A,D ;angle dans A |
LOAD HL, # TASIN spointeur au début de la table de sinus
ADD AL
LOAD L,A
LOAD A,H ; ADD HL, A calcul du point d'entrée
ADDC A,#0 dans la table
LOAD H,A
LOAD B, (HL) ;valeur du sinus dans B
LOAD A,#'*
INC B
DEC B
JUMP,EQ SING
W ?DICAR
JUMP SIN4
W RETURN |
INC D ;angle suivant
DEC C sdécompteur
JUMP,NE SINZ
TRAP
au sinus: sin 8009 = 50.
il 0
. B o ;50+sin 109 = 8,68
.B 17. 350+sin 20° = 17,1
» e &0 : 50-sin 300 = 25
B Ils s OB Wy Ve 48, N roto.
B 88, ., 476, 43, 30, &y 25 s By U
. END S INUS

Numeérisé par micromusee.ch

Exemple 23.2. On veut jouer des notes aussdi correctement que possible.
La nangte de Zouches ASDFGHJIKL doit pemetine de .
jouer La gamme. A chacune de ces touches cornrespond une fré-
quence et une durée, exprimée en nombre de périodes. Les
touches sont reconnues par Leuwr code ASCIT, qud n'est malheu-
reusement pas dans L'ordre des fLouches.

lene solution: constuire une ghande table, dans L'orndre des codes ASCIT.

Note Touche Code ASCII No d'ordre Période WNbre périodes

DO A 101 0 277 103
B 102 1 0 0
L. 103 2 0 O
MI D 104 3 230 125
E 105 4 0 O
FA F 106 5 217 132

Apres avoir lu le clavier, on soustrait la valeur 'A=101 pour avoir le
numéro d'ordre dans la table, on double ce n® d’ordre étant donné qu'il vy
a deux bytes pour chaque note, et on préléve dans la table la fréquence
et le nombre de périodes qui permettent de jouer cette note.

2eme sokution: pourn evitern La place perdue dans La Zable précédente, une

premiene fable est balayée pounrn trouver quel est Le No d'orndre de La
touche pressée.

No d'ordre Touche

A

WN -0
m o wm

Ce No d'ordre permet ensuite d'accéder a la table des périodes et durées,
qui sont dans l'ordre des notes.

Cette deuxieme solution est plus flexible, mais son temps d'exécution est
plus grand. On entendra donc plus le raccord entre deux notes.

31

Numeérisé par micromusee.ch

24. MISE AU POINT 9E PROGRAMMES

La mise au point d'un programme peut é&tre rapide ou trés longue et pénible. Ceci
dépend essentiellement de 1a méthode de travail utilisée.

Un premier principe a appliquer est de bien réfléchir au programme avant de le

taper, de bien le structurer en le tapant, de le sauver avant de commencer la
mise au point.

Une bonne méthode est le test sur papier. Une fois que le programme est
ecrit sur brouillon, on vérifie son déroulement en simulant soi-méme le pro=

cesseur, copiant 1'état des registres sur une feuille de papier, dessinant
1'écran, etc.

Un deuxiéme principe est de décomposer le programme en modules, de Si pogsib]e
tester chaque module séparément, et en tous cas de rajouter pendant la mise au
point des instructions d'affichage de résultats partiels entre chaque module.

En particulier, il est conseillé d'afficher les variables dans 1'écran et, si

un usage fréquent de la pile est fait, d'y placer également 1la pile
avec 1'instruction LOAD SP,# 42377.

L' interprétation du contenu de 1a pile est délicat @ cause de 1'interruption,
mais les erreurs éventuelles de PUSH/POP apparaissent clairement.

L'instruction TRAP permet d'arréter 1'exécution et d'examiner les états des

registres (sous SMILE, ordre (PROGRA) R)). Il est possible de continuer
PROGRA) X:).

1'exécution @ partir de ce point d'arrét avec On peut donc
avoir plusieurs TRAP dans un programme.

Il est également possible de definir une routine de test qui affiche des
registres, des positions mémoire, ou joue des notes, et d'appeler ensuite

cette routine @ certains points du programme ou on a de la peine a imaginer
Ce qui se passe.

De facon générale, tester un programme n'est pas vérifier qu'il fonctionne
une fois. C'est étre sir que, quelles que soient les conditions d'utilisa-

tion de ce programme, 11 fonctionnera correctement. Cette philosophie doit
s'appliquer d'abord aux modules et ensuite au tout.

»
o

Choix d'exercices

29+
£y,

4

25.

25.

23,

£

48

4. B

s

Numeérisé par micromusee.ch

PROBLEMES

Fo

Caleulen Les nombres premiers infériewrs a 276.

Afficher Leur valeur en décimal sur L'dchan, puis afficher Le crnible .
d' Enatostene pour Les 1280. premidres valewrs (L'écran a 64. x20. caraclines).

. Fatre une statistique des codes trhouvés dans 2048, positions consécutives

en mémosre (@ parntin d'une adresse varniable). o
Representer un histoghamme des valeurns, caleuler La moyenne et L'écran type.

Generen sun Le haut-parleun Le code mornse des caractires tapés au clavien.

Memorcsen Le message dans une zone mémoire, pour pouvoir Le réexpédien
automatiquement une 2e¢ fods.

. Ecrwne Les noutines ?PAFOHL, ?AFXHL en supprimant Les zBhros non ALgni-

facatifs au debut du nombre. Générnalisen ces noutines pour affichern des
nombres multiprécision en mémoine.

. Ecrine des noutines RND A, RND HL qud géndrent dans A ou HL un nombie

entien aléatoine.
Ecune Le proghamme qud vénifie La nature aléatoire de ces nombres.

. Ecrnine un programme qui permet de géngren sun L'écnan un "show" pubfici-

fairne avec des textes préparnés a L'avance, des motifs décoratifs, des
melodies, efc.

. Ecrne un programme qud permel d'afgichen surn fout L'écran une horloge (affi= .

chage 7 segments ou analogdique). Les noutines de base doivent permettre de
genenen des segments de Longueur et inclination donnée, ou de relien
par un segment deux points donnés.

Ecrine un programme permettant de remplin un forwmulaine affiche sun L'écran
en caractenes invernsés, el de mémorisern ow perforern au fur et a mesure La
partie signigicative du questionnaire.

. Ecune une noutine BEEP jouant des notes aussd correctes quée possible.
Format propose: |

e

sttt s
DOUBLE CROCHE = 1 00 . 4
0 bas - crocHE = 2 o = 2
'+ algy nNgIRe = 3 RE . %
NOIRE POINTEE = 4 — . A
BLANCHE = 5 MT . €
BLANCHE POINTEE = 6
RONDE = 7 , atc.

