
PROGRAMMAT! ON 780

»

Octobre 1980

EPSOÏEC=System sa

����������	������	���

���Mis � disposition par Jean-Daniel Nicoud
Mars 2024

PROGRAMMATION DU Z80

Le but de ce chapitre est de montrer en détail la structure et les instructions
d'un processeur, le Z80. Seules les instructions indispensables au débutant sont
étudiées en détail.

5.1 INTRODUCTION: LE PROCESSEUR ZILOG Z80

Le microprocesseur Zilog Z80 est une version améliorée, compatible software
avec le 8080, ^vec davantage de registres et d'instructions.

Le Z80 est plus rapide que le 8080, et plus facile à interfacer; il contient
des circuits de rafraîchissement des mémoires dynamiques et a des possibilités
d'interruption intéressantes.

Pour toutes ces raisons, le Z80 a rapidement conquis le marché et son prix est
compétitif en tenant compte de l'augmentation de performances et de l'économie
dans les programmes dus à un répertoire d'instructions plus riche.

DIFFERENCES SOFTWARE ENTRE 8080 et Z80

Le Z80 est presqu'entièrement compatible avec le 8080; la différence concerne
l'indicateur de dépassement de capacité, rarement utilisé.

Les avantages du Z80 sont les suivants:

- Un dédoublement de l'accumulateur A et du
facilitant le changement de contexte lors
des sous-routines.

registre F et des registres B,C,D,E,H,L
de l'interruption ou de l'appel

- Deux registres d'index IX et IY procurent les avantages de l'adressage indexé
du 6800 avec pour différence le fait que le déplacement est signé, et qu'il y
a deux registres. Beaucoup d'instructions utilisent ces deux registres et
permettent d'effectuer les transferts nécessaires de données. Ces instructions
ont toutefois 3 à 4 byteS de long et sont par conséquent plus lentes que
d'autres.

- L'adressage indexé a été ajouté également pour la sélection des périphériques,
l'adresse du périphérique étant mise dans le registre C.

- Des instructions de transfert de blocs de données et de recherche ont été
ajoutées dans le Z80, de même que des instructions de décalage agissant sur
les contenus de chaque registre et position mémoire indexées.

- L'adressage relatif existe
l'appel de sous-routines.

pour quelques sauts conditionnels, mais non pour

- Il est possible de mettre à "0" ou à "1" ou de tester un seul bit
de n'importe quel registre ou position mémoire indexée.

- La plupart des instructions arithmétiques modifient les flags de façon plus
complète que celles du 8080. Le flag de dépassement de capacité est très utile
pour l'arithmétique signée, et les instructions d'ajustement décimal et de
rotation 4 bits simplifient les opérations décimales en multiprécision.

Les registres de rafraîchissement et de page d'interruption sont accessibles
par software.

����������	������	���

���

CARACTERISTIQUES HARDWARE

Les signaux du processeur Z80 sont simples et naturels (Fig. 1).
Il faut les coder, mais tous les signaux sont disponibles directement, sans
multiplexage, à cause de l'économie de pins due à une alimentation unique
(+5V) et à une entrée d'horloge unique. Tous les signaux de contrôle sont
inversés, à trois états, directement compatibles pour une version multiproces­
seur avec une charge du bus limitée.

Fig. 1. Signaux du Z80 et horloge permettant d'exécuter
du "dock step" lors du dépannage.

Les timings du Z80 ressemblent beaucoup à ceux du 8080, puisque
ces deux circuits ont été conçus par la même équipe. Chaque instruction
prend de 1 à 6 cycles, et chaque cycle de 1 à 3 états (impulsions d'horloge).
Pour une instruction, déterminée, le nombre d'états est généralement le même
pour le Z80 et le 8080, mais la durée d'une impulsion d'horloge est
respectivement 400 ns et 500ns.

Pour une description détaillée des signaux du Z80, le lecteur pourra se
référer au "Z80-CPU technical Manual".

La fig. 2 donne les timings importants et montre les 6 cycles de base que le Z80
peut exécuter. Ces diagrammes montrent des signaux non inversés, qui correspon­
dent aux signaux de contrôle inversés du processeur. Cette convention simplifie
la conception des interfaces.
Il faut remarquer la différence de timing entre le premier cycle de transfert
mémoire d'une instruction et les suivants. Le temps d'accès depuis 1 instant
de la sélection est de 450 ns lors du premier cycle de recherche et de 640 ns ,
dans un cycle de lecture. Ces temps sont diminués par l'interface. Le temps d'ac­
cès du périphérique est aussi très court, mais il est augmenté de 800ns durant

5.1-2

����������	������	���

���

Fig. 2. Timings des 6 cycles fondamentaux du Z80.

Vinterrupt acknowledge", à cause du temps de propagation de la chaîne de prio­
rité d'interruption utilisée par Zilog dans ses interfaces programmables. L'en­
trée WAIT (NOT READY) permet de ralentir le processeur par adjonction d'états Tw.
Le temps accordé pour décider s'il faut attendre sur un périphérique est très
bref. Il est aussi possible d'arrêter l'horloge dans son état 1, ce qui permet
de contrôler le comportement du système en mode pas-à-pas (Fig. 1).

Pendant le cycle Tl, le premier cycle de chaque instruction, et après l"'inter-
rupt acknowledge", une adresse de rafraîchissement est mise sur le bus par un
compteur de 7 bits, incrémenté après chaque cycle de rafraîchissement. Etant
donné que certaines instructions comptent 20 états, c'est-à-dire s'exécutent
en 8 us, la fréquence de rafraîchissement est supérieure à 120kHz , alors que
la prupart des mémoires ne nécessitent que 64 kHz.

Lorsque le processeur est interrompu par le signal "Bus request", les lignes
d'adresses et de données, ainsi que les lignes de contrôle à l'exception de
"Bus acknowledge", sont flottantes. Les relations temporelles entre signaux

5.1-3

����������	������	���

���

et adresses sont propres, ce qui simplifie le décodage et supprime les flips-
flops de synchronisation. Le seul point regrettable est l'absence d'un signal
avancé "write" dans les cycles d'écriture. Pour les instructions de sortie, ce
défaut est corrigé par un timing approprié.

INTERFACE MEMOIRE

Dans un système minimal, il est facile de relier le Z80 à des circuits mémoire.
Les signaux de contrôle pour des circuits mémoire ayant une pin "output enable"
sont donnés dans la figure 3a. Le signal MREQ sélectionne la mémoire, l'impulsion
d'écriture WR écrit en mémoire et l'impulsion de lecture RD permet de lire. Si
l'on utilise une ROM sans pin "OE", il faut faire le ET logique de l'impulsion de
lecture RD avec "MREQ", pour éviter tout court-circuit quand le programmeur
essaie d'écrire dans la ROM.

La figure 3b montre l'interface avec une mémoire dépourvue de contrôle direct
des sorties. Les signaux RD et WR doivent être combinés avec MREQ par quelques * • *
portes pour faire la sélection.

La figure 3c montre le principe de 1'interfaçage avec une mémoire dynamique,
rafraîchie par le microprocesseur. CE (chip enable) est actif lorsque la RAM
est sélectionnée (CS actif) ou lorsque l'impulsion de rafraîchissement est
décodée.

b)

Fig. 3.

Interface Z80 - mémoires.

INTERFACES D'ENTREE/SORTIE

Zilog commercialise ou prépare une famille de chips interface faciles
à utiliser dans une configuration minimale (fig.4a). Les circuits
interface d'autres fabrication peuvent également être utilisés. Les
circuits INTEL ont des entrées lecture et écriture séparées et sont donc
compatibles avec le Z80 (fig.4b). Les circuits MOTOROLA ont une seule
ligne de contrôle d'écriture, ce qui n'est en général pas un problème
étant donné que le signal "write" du Z80 est actif aussi longtemps
que le signal de sélection entrée/sortie (fig. 4c). Dans chaque cas,
il faut vérifier les timings.

5.1-4

����������	������	���

���

Fig. 4. Interface minimum Z80 - entrées/sorties.

INTERFACE MUBUS

Il est facile d'interfacer un processeur Z80 avec un système MUBUS'
le schéma n'est toutefois pas aussi simple qu'on le voudrait, du fait que
le Z80 n'a pas de signal "write" avancé.

La fig. 5 donne un schéma complet, tenant compte de toutes les contraintes,
y compris la possibilité de faire un système multiprocesseur.

A AA SELEXT

adresseBus d‘ INHIBLOW
HOLDACKLOWinterne HOL.ACKHULTI

GRANTED

BUSACK

REFR

ADMEMLOW

MREQ

WRITELOW
RD

IORQ

Ml

WR

B zi

B
18

® (D(D ADRESSES

REFRLOW
fi
16

BUS OCCUPIEO

B

Fig. 5. Interface complet Z80 - MUBUS.

ADPERLOW

INTACKLOW

18

NODALOW
B
20

Bus de donnée
interne

5.1-5

����������	������	���

���

ORGANISATION DES REGISTRES, REPERTOIRE D'INSTRUCTIONS

Le processeur Zilog Z80 comporte 16 registres
deux registres spéciaux.

8 bits, 4 registres 16 bits et

S Sign bit
Z Zéro bit
H Auxiliary carry
P Even parity bit
V Overflow bit
C Carry bit
N Add/subtract bit

A Accumulator

F Flags Second register bank

D'

C
an

no
t b

e r
ea

d b
y s

of
tw

ar
e

CPU control
flip-flops

IFF2]

IFF1

IMO]

[ÎmÎ 1

0*0

B'CD’éH'L'
pointer

B (counter registerl C (peripheral address)

IX

| Interrupt page reg

SP Stack pointerPC Program counter

Les 8 registres du 8080 (Accumulateur A, registre de flags F et registres B,C,
D,E,H,L) sont duplifiés. Il n'y a que deux instructions qui font l'échange des
groupes AF et BCDEHL respectivement (le programmeur ne peut pas savoir quel
groupe de registres il utilise).
Le registre de flags F est formé des indicateurs d'état habituels: S(signe),
Z(égal à zéro), H (demi-report), C(report), qui sont modifiés selon le
résultat de l'opération arithmétique précédente. Il existe aussi un flag
N(soustraire) qui permet de corriger la valeur décimale après une instruc­
tion d'addition ou de soustraction. Ce flag vaut zéro, après les instruc­
tions logiques et d'incrémentation. Par contre, il vaut 1 après un ordre
de soustraction, inversion, décrémentation ou comparaison. La correction
décimale consiste à ajouter 6 lorsque N=0 si le résultat d'une opération bi­
naire sur des digits décimaux est incorrect, ou de soustraire 6 si N=1.
Le bit H de demi-report produit par le report sur les 4 derniers bits
aide au décodage de cette condition.

Le flag le plus difficile à comprendre est le bit P/V de parité/dépassement
de capacité. Ce bit est un étrange compromis entre la nécessité d'être
compatible avec le flag de parité du 8080 et de désir d'ajouter un flag
de dépassement de capacité, qui n'existe pas sur le 8080. Le flag P est
modifié après une opération logique ou après un LOAD r,$(C) (transférer
dans le registre r la donnée située dans le périphérique dont l'adresse
est contenue dans C). Après les opérations arithmétiques, le même
flag indique s‘il y a dépassement de capacité .(V=l signale qu'il y a eu
dépassement de capacité dans un calcul de complément à 2). Le fait d'utili­
ser le même flag pour la parité et le dépassement de capacité économise
des instructions de saut conditionnel. Par exemple JUMP,PE (parity even:
si résultat pair) est équivalent à JUMP,VS (oVerflow Set: dépassement de
capacité). Ce même flag est encore utilisé dans l'instruction CPI, qui
compare le contenu, de A avec celui d'une position mémoire (S,Z,H modifiés)
et décrémente le contenu des registres BC (V=0 si BC = 0). Il est utilisé
également pour tester le flag d'interruption.

Le processeur contient encore quelques flip-flops de mode, qui ne sont
pas accessibles au programmeur. Nous avons déjà mentionné les pointeurs
pour A'F' et B'C'D'E'H'L'. Trois autres flip-flops définissant le mode
d'interruption et sont mis à 1 par des instructions spéciales, qui mettent
à zéro les deux autres flip-flops.

5.1-6

����������	������	���

���

Le mode 0 est équivalent au 8080: l'instruction lue durant le signal
"acknowledge" est exécutée; c'est d'habitude une instruction de restant
(appel à l'une des adresses 0, 10, 20, 30, 40, 50, 60, 70 , instructions
d'un byte), fournie par le périphérique demandant 1'interruption.

Dans le mode 1, le processeur exécute un CALL 70, et dans le mode 2 un
CALL indirect d'une adresse 16 bits, les 8 bits de poids faible étant
donnés par le périphérique (valeur paire) et les 8 bits de poids
fort étant contenus dans le registre I.

Le flip-flop d'interruption est dédoublé dans le processeur Z80 et la
valeur de "IFF2" est transférée dans le flag P/V par l'instruction LOAD A,I.
Ainsi, après une instruction LOAD A,I, JUMP,VS est équivalent à JUMP, ION
et JUMPjVC à JUMP,IOF. Les deux flip-flops d'interruption IFF1 et IFF2
sont justifiés à cause de la présence dans le Z80 d'une entrée NMI (non
maskable interrupt), utilisée en cas de rupture de courant.
Les interruptions mettent à zéro à la fois IFF1 et IFF2 et c'est au
programmeur de réactiver 1'interruption sitôt qu'il le désire.,
NMI remet IFF1 à zéro, qui contrôle ION/IOF, mais ne modifie pas IFF2.
Il est donc possible de mémoriser l'état du système et de le retrouver
inchangé à l'enclenchement.

Un registre spécial est le registre de rafraîchissement R. C'est un registre de 8
bits, qui peut être chargé par le contenu de A, mais c'est en fait un compteur de
7 bits, incrémenté à chaque instruction. Pendant le cycle de rafraîchissement, le
bit de poids fort est transféré au bus d'adresse, mais n'est pas modifié par le
comptage. Quelques applications spéciales sont possibles grâce au registre de ra­
fraîchissement; il peut, par exemple, être utilisé comme générateur de hasard 7
bits (bien que la probabilité soit faussée par le fait que certaines boucles
comportent un nombre d'instructions non premier à 128}.

Les 4 registres 16-bits du Z80 sont le compteur d'adresses PC et le pointeur
d'adresses SP, ainsi que deux registres d'index (qui n'existent pas sur le 8080).
Ainsi, avec le Z80, on peut utiliser simultanément jusqu'à 9 pointeurs (BC,DE,HL,
B'C,D'E',H'L',SP,IX,IY) et les instructions utilisant les registres d'index IX
et IY permettent d'ajouter un déplacement signé.

Les instructions spécifiques au Z80 (inexistantes avec le 8080) sont les instruc­
tions de saut relatif. Il en existe une de saut inconditionnel et quatre de saut
conditionnel, ainsi qu'une instruction combinée de décrémentation et de saut
relatif, qui permet de parcourir une boucle tant que le contenu du registre B
n'est pas nul (DECJ,NE B,LOOP)

La convention pour l'adressage relatif est identique à celle qui est faite
pour le 6800. Le second byte de l'instruction contient un déplacement signé
de 8 bits, qui est ajouté au contenu du compteur d'adresses (lorsque ce dernier
pointe déjà l'instruction suivante).

Lorsque le programmeur écrit une instruction, il considère comme adresse
celle de début de l'instruction: il y a donc une différence de 2 unités
avec ce que le microprocesseur prend comme adresse. JUMP .+2' signifie
JUMP (PC)+&* avec PC pointant l'adresse de l'instruction suivante. Si le
programmeur veut revenir à l'instruction précédente (et en supposant qu'elle
comporte 2 bytes), t' = -2 = 376 et le deuxième byte de l'instruction de
saut relatif est -2-2 = -4 = 374.

Dans un programme, on n'écrira jamais JUMP .+4 ou JUMP .-23, mais
par exemple JUMP NEXT ou JUMP ROUTINE. L'assembleur calculera la diffé­
rence et tiendra compte de la correction de deux unités.

Pour commencer, nous ne considérerons que les registres A,B,C,D,E,F,H,L (8 bits), PC
et Sp (16 bits). Parmi les bits du registre F, nous nous intéresserons d'abord à S
(signe du résultat), Z (vaut 1 lorsque le résultat est nul) et C (retenue produite
par l'unité arithmétique).

5.1-7

����������	������	���

���

5.2 INTRUCTIONS DE TRANSFERT

RAPPEL: CODAGE DE L'INFORMATION

Rappelons que le mot bit, utilisé aussi bien par l'anglais que le français
représente un chiffre binaire, c'est à dire 0 ou 1.

Considérons un mot de 8 bits, que les américains appellent byte et les français
octet. Ce mot de 8 bits, par exemple 01 000 001, peut représenter

Ô.
10

128» 64. 32. 16.
200 100 43 23

2

40. 20. 10.. 9.

2

un nombre binaire, chaque bit ayant un poids égal à
29 2] 22, 2^, ..., 2Z (de droite à gauche).

Ce nombre binaire est équivalent à 101 octal ou 65. décimal
(les nombres décimaux sont suivis d'un point).

si l'on partage les 8 bits en 2 groupes de 4 bits et si l'on
prend les équivalents décimaux des 2 nombres binaires de
4 bits, on obtient le nombre BCD (décimal codé binaire) 41.

représente aussi l'une des 256 instructions possibles d'un
ordinateur 8 bits (pour le Z80, load b,C qui copie le
contenu du registre C dans le registre B).

représente la lettre A dans le code ASCII.

INSTRUCTIONS DE TRANSFERT ENTRE REGISTRES ET MEMOIRE

Les instructions de transfert sont toutes caractérisées par le code mnémonique
LOAD.

Processeur
Mémoire

LOAD A,B

L'instruction load a,b
transfère le contenu du registre B
dans le registre A. Le contenu de B
n'est pas modifié.

Adressage entre registres

Il y a 49 instructions de transfert entre les 7 registres
Le tableau complet de ces instructions prendrait beaucoup
écrit de façon condensée

de 8 bits A,B,C,D,E,H,L.
trop de place et l'on

4 j 100 "b 4" LOAD r,s
Load r with content of s

A • •

B

D
E
1 I
I i

t.

Pour assembler une instruction déterminée, on effectue mentalement deux.additions
(en octal). Le ++ dans le code de base signifie qu'il faut ajouter deux valeurs,
qui dépendent des opérandes (le tableau des valeurs à ajouter se trouve à proxi­
mité). Par exemple, le code octal correspondant à load d,b est T00+20+0 - 120 .

5.2-1

����������	������	���

���

Un autre type d'instruction de transfert est
dans la mémoire.

Mémoire

LOAD A,m, où m est une adresse

Processeur L'instruction LOAD A,m transfère
dans A le contenu de la position
mémoire d'adresse m.

L'avantage de cette instruction est
que l'on peut modifier facilement le
programme en modifiant le contenu de m.

Adressage absolu

Les transferts avec la mémoire ne peuvent se faire qu'avec le registre A, et
sont codés

LOAD m,A
m 16-bitnumber

13

Ml

72 LOAD A,
Load A absolu te

I3 62

rn
I •m

Trois mots de 8 bits sont nécessaires pour coder une instruction de transfert entre
un registre de 8 bits et une position mémoire. Le premier byte caractérise l'opération
et le registre concerné, le deuxième byte contient les bits de poids faible de l'a­
dresse, et le troisième byte les bits de poids fort. Par exemple, l’instruction
LOAD A,PREMN0, destinée à transférer dans A le premier nombre d'une série de valeurs
préalablement mises en mémoire (PREMN0 est par exemple à l'adresse valant 2057 octal)
se code:

72
57
M

adresse 57
page 4

adresse complète 2057 = 4-400 + 57

Le fractionnement de l'adresse complète en deux mots de 8 bits revient à considérer
des pages de 256, positions, avec dans chaque page une adresse 8 bits valant 0 à 377.
L'adresse dans la page se trouve dans le 2e byte, l'adresse de la page se trouve dans
le 3e byte, et le tableau de correspondance suivant facilite le fractionnement:

adresse 0 - 377 page 0
400 - 777 1

1000 - 1377 2
1400 - 1777 3
2000 - 2377 4
2400 - 2777 5
3000 - 3377 6
3400 - 3777 7
4000 - 4377 10

40000 - 40377 100 (Ecran SMAKY 6)

On remarque une relation entre le nombre de milliers, multiplié par deux en
octal et la page: par exemple l'adresse 6750 se code

page
14

Pour coder l'instruction qui transfère dans
mémoire 6750, on utilise les codes suivants

le registre A le contenu de la position

LOAD A,6750

5.2-2

����������	������	���

���

INSTRUCTIONS D'INITIALISATION DES REGISTRES

Un registre peut être initialisé à une certaine valeur prévue oar le programme,
comme nous l'avons vu dans la première partie.

Adressage immédiat

L'instruction LOAD A,#n
(# se lit valeur) prend la
valeur n et la met dans le registre A.

Les instructions d'initialisation des registres peuvent s'écrire
I

n
LOAD r,#n
Load r immédiate

n 8-bit number

70
0

10
20
30
40
50

A
B
C
D
E
H
L0

0
Ces instructions ont deux bytes.
n est une valeur numérique de 8 bits (0 à 377) représentée dans l'instruction par
un symbole évoquant sa signification.

INSTRUCTIONS DE TRANSFERT ENTRE REGISTRES ET PERIPHERIQUES

Le Z80 permet de définir jusqu'à 256. adresses de périphériques, numérotées de
0 à 377, dans lesquelles on peut lire ou écrire comme en mémoire avec les instruc­
tions suivantes:

LOAD A,$n
Load A withdata from pencherai n (input)

10 333
n

LOAD $n,A
Load peripheral n with content of A (output)

Le^ adresses de périphériques se distinguent des adresses mémoire grâce au signe $.
Le transfert peut donc se faire directement avec le registre A. Souvent seule une
partie des huit bits d'adresse est décodée, parce que l'on a rarement besoin de 256.
périphériques. Le DAUPHIN, par exemple, ne décode que 6 bits d'adresse de périphé­
riques. Les instructions LOAD A,$1, LOAD A,$101, LOAD A,$201 et LOAD A,$301
sont alors tout à fait équivalentes, mais il n'y a pas lieu d'utiliser les trois
dernières.(Nombre maximum de périphériques distincts: 64).

INSTRUCTIONS DE TRANSFERT AVEC LES REGISTRES 16 BITS

Les registres du Z80 sont associés par paires
D avec E, B avec C. Les instructions de type
les faire facilement avec deux instructions

pour certaines instructions: H avec L,
LOAD Hl.,BC n'existent pas, car on peu;
LOAD H,B
LOAD L,C

Il existe en revanche une instruction qui
(et ceux-là seulement)

permute les contenus des registres HL et DE

4| 353] EX DE,HL
Exchange DG «ind ML

����������	������	���

���

Le transfert de 16 bits en mémoire (aux adresses m et m+1) avec le registre HL est
possible (adressage absolu)

16 LOAD HL,m 16 42

m

LOAD m,HL

Le Z80 autorise également le transfert des registres BC,DE,SP.

L'initialisation d'un registre 16 bits par une valeur donnée dans l'instruction
(adressage immédiat) est également possible p

LOAD p,#m 20
40
60

BC
DE
HL
SP

O

On remarque comme avant que dans l'instruction la donnée de 16 bits est coupée en
deux avec tout d'abord les 8 bits de poids faible (registre L,E ou C), puis les
8 bits de poids fort.

UTILISATION DE LA PILE

Une autre possibilité de transfert utilise
appelé pointeur de pile. C-'est un registre
l'adresse d'une certaine position mémoire.

le registre SP /stack pointer/,
16 bits, dont le contenu représente

L'instruction push a transfère le
contenu de A dans la position pointée par SP
et, simultanément, décrémente le registre SP.
En effectuant successivement PUSH A, PUSH A...
on écrit le contenu de A dans les positions •
mémoire successives en dessus (si les 1ères
adresses de la mémoire sont en haut du dessin)
de la première.

Avec le Z80, on peut seulement sauver sur le stack des paires de registres: A et F,
BC,DE,HL. En général on effectue push AF, push BC, PUSH DE ce qui mémorise les
contenus des registres AF, BC, DE dans 6 positions mémoire successives (l'utilisateur
ne se préoccupe pas de savoir lesquelles). Ensuite on reprend ces valeurs, dans
l'ordre inverse, au moyen des instructions pop de, pop bc, pop af.

La pile /stack/ doit être initialisée pour pointer une zone mémoire disponible.
Cette initialisation est faite par le programme moniteur. Lorsqu'on n'utilise pas ce
programme moniteur, il faut définir la pile soi-même.

10

305 + PUSH p

POP p
(POP AF modifies ail flagsj

60

20

AF
BC
DE
HL

O

En utilisant ces nouvelles instructions, le programme permutant circulai rement les
contenus des registres A,B,C,D s'écrit simplment

LOAD
PUSH
LOAD
LOAD
LOAD
POP

SP
AF

DE

Comme l'instruction EX BC,DE

PUSH
PUSH
POP
POP

BC
DE

BC

DE

STACK
»

;D contient alors la dernière valeur placée sur la
;pile, soit le contenu primitif de A.

n'existe pas, on peut la remplacer par:

I

J

5.2-4

����������	������	���

���

5.3 COMPLEMENT Al ET A 2

Sans vouloir redéfinir de façon détaillée les notions de complément et de re­
présentation des nombres négatifs, rappelons que le complément à 1 d'un mot
binaire s'obtient en inversant tous ses bits, ou en effectuant la différence
avec un mot de même longueur qui ne comporte que des 1.

Exemples: mot de 8 bits: 10 110 101 = 265 octal
complément à 1: 01 001 010 = 112 octal

Calcul du complément 11 111 111 377
à 1 par soustraction: -10 110 101 265

01 001 010 TT2

Mot de 16 bits:
Complément à 1:

Calcul du complément
à 1 par soustraction:

1 101 011 100 111 110 = 153476 octal
0 010 100 011 000 001 = 024 301

1 111 111 111 111 111 177 777
-1 101 011 100 111 110 -153 476

024 301

Le calcul en octal directement évite de devoir écrire des lignes de 0 et de 1
il est très facile, car les règles sonVici identiques à celles du système
décimal.

Le complément à 2 s'obtient en faisant la différence avec un nombre égal à 2n,
n étant le nombre de bits. Ce nombre a partout des 0, avec un 1 pour le poids
immédiatement supérieur.

Exemples: mot de 8 bits: 10 110 100 = 264 octal

Calcul du complément à 2: ÏÔÔ ÔÔÔ 000 400
-10 110 100 -264

01 001 100 114

En octal 8 bits le calcul se ramène à des différences à 8, puis à 7, avec pour
chiffre de poids le plus fort une différence à 4 ou à 3, car ce chiffre ne code que
deux bits.

Si on a des mots de 16 bits, il
on fait la différence à 1 77 777

faut faire la différence à 200 000. Dans la pratique
et on rajoute 1.

Le complément à 2 d'un nombre est généralement utilisé pour représenter l'opposé de
ce nombre. Il est important de connaître la longueur du mot binaire et être sûr que
les nombres positifs ou négatifs à représenter ne dépassent pas la grandeur permise.

Exemples: mots de

+243 ne
-303 ne

Autres exemples

8 bits: +45 représenté 00 100 101
-45 représenté par son complément à 28, égal à

400 - 45 = 333 11 011 011
bit de signe I

peut pas être représenté (valeur maximum +177)
peut pas être représenté (valeur minimum -200 représenté par 20

Nombre Complément à 2
2 376 représente -2 |
14 364 représente -14 |
321 (-57) 57

5.3-1

����������	������	���

���

Les nombres représentés ainsi sont appelés nombres arithmétiques. Le bit de poids
le plus fort est le bit de signe. Lorsqu'il vaut 1, le nombre est négatif et repré­
senté sous forme de complément à 2. Pour en connaître la valeur absolue, il faut en
reprendre la complément à 2.

Exemple: Quel est l'équivalent décimal du nombre arithmétique octal 8 bits 323 ?

- Ce nombre est négatif car le 8e bit vaut 1 (> 200 base 8)
- La valeur absolue, égale au complément à 2, vaut 400 - 323 =055

(calcul mental: 0-3, c'est-à-dire 8-3 = 5 avec emprunt
0-emprunt-2, càd 7-2=5 avec emprunt
4-emprunt-3 = 0)

- La valeur décimale équivalente est 55 (octal) = 5-8 + 5 = 45. (décimal
- Le nombre arithmétique 8 bits 323 donné représente le nombre

décimal -45.

Il faut remarquer dans la donnée de cet exemple que les 3 termes arithmétique
octal 8 bits sont importants. Le nombre pourrait être un nombre positif octal
8 bits (certains parlent alors de nombre logique). Dans ce cas, les 8 bits sont
utilisés pour les nombres de 0 à 377, et il n'est plus possible de représenter
les nombres négatifs.

Le nombre pourrait être un nombre arithmétique octal 9 bits. Dans ce cas, 323
serait un nombre positif, car le 9e bit vaut 0.

Si le nombre était un nombre arithmétique décimal, il ne faudrait pas préciser
le nombre de bits, mais le nombre de digits, et définir clairement comment le
signe est représenté.

La représentation des nombres négatifs sous forme de nombres arithmétiques en
complément à 2 facilite considérablement les opérations arithmétiques. Il
suffit d'ajouter les compléments au lieu de soustraire. Par exemple si l'on
doit effectuer l'opération 8 bits 124+31-173 (octal), et que l'on s'est assuré
que chaque nombre et chaque résultat partiel ne dépasse pas la capacité de la
machine (7 bits plus un 8e bit de signe), il suffit de convertir -173 en son
complément à deux 8 bits (400-173=205) et d'additionner

124 155
+ 31 +205 Le résultat est négatif (> 200) et peut être conservé

155 362 tel quel pour les calculs ultérieurs.

Ces quelques exemples montrent bien la diversité des représentations des nombres,
et les problèmes et erreurs qui peuvent apparaître lorsque la représentation
utilisée n'a pas bien été définie et comprise.

5.3-2

����������	������	���

���

5.4 INSTRUCTIONS DE SAUT

Les instructions de saut permettent de revenir en arrière, passer par-dessus
une zone réservée, etc.

303

• m
JUMP m
Jump absolute i adresse du saut: poids faible (positio

J puis poids fort (page) avec le Z80

Comme exemple d'àpplication d'un saut, citons le raccommodage/patch/ d'un
programme dans lequel on doit insérer une ou plusieurs instructions oubliées.
Plutôt que de réassembler et recharger toute la suite du programme, on peut
supprimer quelques instructions et les remettre avec l'instruction oubliée
dans la zone de raccommodage.

EXEMPLE: PROG: 100 LOAO D,#0
1
2 LOAD B,# 15
3 OUBLI: ADD A,# 10
4 LOAD TRUC,A
5
6
7 ADD A,# 10

Programme "racommodé"
PROG: 100 LOAD D,#0

1
2 303 JUMP PATCH
3 200
4 0
5 plus utilisé

NEXT • 6
7 ADD A,# 10

PATCH: 200 LOAD B,# 15
1
2 ADD A,# 10
3
4 I.OAD TRUC, A
c

6
7 303 JUMP NEXT

210 106
'1 o

En plus du saut absolu, il existe une instruction de saut relatif.
L'adressage relatif permet de définir une adresse par rapport à l'adresse
de l'instruction qui s'y réfère, de même que l'on dit dans le langage courant
"il habite deux maisons plus loin que moi". L'avantage est que les nombres
sont plus petits et prennent moins de place, donc les programmes plus courts
et moins coûteux en mémoire.

JUMP .+«’
Jump relative

Le déplacement C permet de sauter de 1 à 177 positions mémoire ou de revenir en
arrière de 177 positions au maximum (dans ce cas 6 vaut de 377 à 200).
Le programmeur, s'il fait l'assemblage à la main, doit calculer le déplacement
en faisant la différence entre l'adresse de l'instruction à laquelle il veut sauter
et l'adresse de l'instruction qui suit l'instruction de saut relatif. Si le saut
revient en arrière (déplacement négatif), le complément à 2 est utilisé.

5.4-1

����������	������	���

���

EXEMPLE : Le programme

PROG: 100
1
2
3

NEXT: 4
5
6
7

vu précédemment devient

30
74

LOAD A,#0

JUMP. PATCH

LOAD TRUC,A

ADO A,# 10

200-104 = 74

PATCH: 200

30

LOAD

ADO

JUMP NEXT
104-206 = -102 = 377-102+1 =

= 275 + 1 - 276

Une autre instruction qui utilise l'adressage relatif est

20
V-2

DECJ,NE B,. + £'
Décrément B and
jump relative if result
non equal to zéro
(no flans modified)

13 st.nos »f B =0

qui permet de faire facilement des boucles d'attente,
le registre B jusqu'à ce que son contenu soit 0. Si la

DECJ,NE B,. + @’ décrémente
valeur initiale de B est

nulle, la boucle est effectuée 400 fois (octal) = 256. , valeur maximum possible.

Ainsi instruction 20
3761 DECJ’NE B,, qui demande 8 cycles pour être exécutée

prend un temps total de 256.x8.x0,4 ps = 820 ps si la valeur initiale de B est 0
et si le processeur tourne à vitesse maximale. Le symbole . (point) veut dire PC
(compteur d'adresses), jump . est un saut sur place (seul un RESET permet d'en
sortir) que l'on préfère écrire en général STOP: jump stop .

5.4-2

����������	������	���

���

5.5 APPELS DE SOUS-PROGRAMMES

Lorsque la même partie de programme doit apparaître à plusieurs endroits du
programme (par exemple une attente de quelques millisecondes), il est stupide
de la recopier, sauf si c'est plus court ou plus rapide.

L'instruction call permet de sauter à la copie unique de cette partie de pro­
gramme appelée alors sous-programme /sub-routine/,avec retour automatique à la
suite du programme à la fin du sous-programme, lorsque l'instruction RET /return/
est exécutée.

CALL

CALL DELAY

DELAY

On ne peut pas mettre une instruction jump à la fin du sous-programme, car on
retournerait toujours à la même adresse. L'instruction RET va chercher une
adresse, mémorisée dans le registre SP /stack pointer/ du processeur lors du CALL,
qui est l'adresse de l'instruction suivante dans le programme principal.

L'instruction CALL est identique à un JuriP avec sauvetage de l'adresse de
l'instruction suivante (qui se trouve dans le PC /program counter/} sur la pile.
On peut dire que CALL X est équivalent à PUSH PC suivi de JUMP X.

On remarque dans le Z80 l'existence d'une instruction CALL à 1 byte, appelée
parfois RST, qui permet d'appeler des routines placées aux positions 0, 10, 20,
..., 70 de la mêmoire.

10

315 UALL m
Call subroutine absolute

PC on stack
’ (SP)—

Il 307 + CALL v
RST v
1-byte Call (restart)

311 | RET Return from
subroutine

O
10
20
30
40
50
60
70

O
10
20
30
40
50
60
70

n

V

5.5-1

����������	������	���

���

5.6 INSTRUCTIONS ARITHMETIQUES

INSTRUCTIONS D'ADDITION

Après les instructions de transfert et de saut, nous abordons les instructions
qui effectuent des opérations.(addition, soustraction, comparaison, décalage,..).
Nous avons aperçu dans un exemple précédent l'instruction ADD A,# 10, mais
nous allons d'abord étudier les opérations entre deux registres.

L'instruction ADD A,B , par exemple, additionne les contenus des registres A et B
et met le résultat dans A. Elle modifie donc A, ainsi que le registre de flags.

S bit 2 7 = 200

Z bit 26 = 100

C bit 2°= 1

bit de poids fort du résultat (signe
(S=0 positif; S=1 négatif)
vaut 1 si résultat = 0

Carry vaut 1 si l'addition
produit un dépassement de
capaci té

L'instruction addc a,b additionne les contenus des registres A et B et le conteu
du Carry

Lorsque les additions ne se font pas sur des nombres octaux, mais sur des nombres
BCD /Binary Coded Décimal/, il faut faire suivre ADD ou ADDC de DAA A /décimal
Adjust/, qui corrige le résultat binaire intermédiaire.

Les additions peuvent également être effectuées entre
nous résumons toutes les additions entre registres en

registres 16 bits
écrivant

et

J 200+ |
)----------------

ADD A,r
IS.Z.C.V.H.N-0I

ADDC A,r
(S.Z.C.V.H.N- ©|

Add with carry<r 210+,---------

DAA A Décimal adjust after ADD
|S,Z,C,P,H] 8080 : Valid only after ADD

ADD HL,p
|C.H!.N-0|

ADDC HL,p
|S.Z.C.V.H!.N-0|

o
20

i60

BC
DE
HL
SP

P

Lorsqu'il faut faire des additions avec des nombres de plus de 8 ou 16 bits,
on décompose en tranches.

EXEMPLES Soit à ajouter deux nombres de 24 bits.
On les place dans les registres B,C,D et E, H, L respectivement

Le plus simple serait de pouvoir écrire

ADD
ADDC
ADDC

D,L

qui tient compte du Carry qui peut se propager d'un groupe à l'autre.

5.6-1

����������	������	���

���

Ces instructions n'étant pas disponibles, il faut compliquer le programme:

LOAD
ADO
LOAD
LOAD
ADDC
LOAD
LOAD
ADDC
LOAD

A,D
A,L
D,A
A,C
A,H
C,A
A,B
A,E
B,A

ADD D,C

ADDC C,H

ADDC B,E

Pour additionner deux nombres décimaux contenus dans HL
on ne peut utiliser l'instruction ADD HL,DE . Il faut
par l'accumulateur A et faire le programme suivant:

et DE,
passer

DADD: LOAD
ADD
DAA
LOAD
LOAD
ADDC
DAA
LOAD

A,L
A,E
A
L,A
A,H
A,D
A
H,A

INSTRUCTIONS DE SOUSTRACTION

Les instructions de soustraction entre registres sont les suivantes:

220+ SUB A,r
IS.Z.C.v.h.n-h

SUBC A,r
| S.Z.C.V.H.N- 1 I

Subtract and
subtract carry

15 355
102 +

SUBC HL,p
|S.Z.C.V.H!.N-11

4 230 +
)-------------

DA A
(S,Z,C,P,H)

Z80 : Valid after ADD (N=O) and SUB (N=1)

Les soustractions en BCD doivent être suivies de DA A.

L'instruction SUB HL,DE n'existe pas sur le Zilog Z80.
Souvent, il faut la remplacer par un groupe d'instructions
que l'on peut appeler par un sous-programme

;----- CALL RSUB jroutine calculant SUB HL,DE
;cette routine modifie A

RSUB: LOAD A,L ; le flag C est initialisé correctement
SUB A,E jsoustrait les bytes de poids faible
LOAD L,A
LOAD A, Il
SUBC A,D jsoustrait les bytes de poids fort et la retenue
LOAD H,A
RET

Remarque: il est plus simple d'utiliser d'utiliser les instructions:

OR A, A
SUBC HL,DE

5.6-2

����������	������	���

���

Le calcul des compléments à 1 et à 2 est un cas particulier de soustraction,
et se fait au moyen des instructions suivantes.

CPL A !’s complément (invert)
|H —1 .N-11

NEG A Negate (2‘s complément)
[S.Z.C.V.H.N—0| Subtract 0-A

INSTRUCTIONS D'INCREMENTATION ET DE DECREMENTATION

Ces opérations permettent d'ajouter ou de soustraire 1 au contenu des
registres. Ces sont les suivantes:

INC r
|S.Z.V.H.N-0|

DEC r
IS.Z.V.H.N- 1|

11 States if (HL)

A
B
C
D
E
H
L
(HL)

INC o
20
40
60

BC
DE
HL
SP

Il faut toutefois remarquer que les instructions d'incrémentation ou de décré­
mentation de paires de registres ne modifient pas les flags.

Pour faire un décompteur 16 bits, dans BC par exemple, et tester son
passage par zéro, on peut écrire

DEC BC
LOAD A,B
OR A,C {calcule le OU logique des 2 registres B et C

;le résultat est nul seulement si les deux
{registres, donc BC, est nul

L'instruction DA a /Décimal Adjust/ permet de faire des compteurs ou
décompteurs décimaux. Par exemple, si BCD est un compteurs 6 digits, il
faut effectuer les instructions suivantes chaque fois que l'on doit addi­
tionner 1.

COUNT:

FIN:

INC- D ; unités et dizaines
LOAD A,D
DA A
LOAD D,A ;ne modifie pas les flags
JUMP.NE FIN
INC C {centaines et milliers
LOAD A,C
DA A
LOAD C,A
JUNP.NE FIN
INC B {dizaines et centaines de millers
LOAD A,B
DA A
LOAD B,A
JUMP,EQ DEPCAP {dépassement de capacité

P

5.6-3

����������	������	���

���

Ce même programme peut s'écrire

cm INI : INC

LOAIJ
DA
L ()AD
LOAD
Al IDC
[IA
LOAD
LOAD
ADDC
DA
LOAD
J Ui^P, : S

I)
A, I l
A
D,A
A,# 0
A.C
A
C.A
A,# 0
A,B
A

f j J IB , rt
DEPCAP ; dépassement de capacité

Ce nouveau programme est plus court et plus rapide que le précédent
(sauf s’il n'y t pas de report sur les centaines).

Il est aussi possible d'ajouter ou soustraire un nombre 8 bits au contenu
du registre A (adressage immédiat)

7 100 + Dp
Op

Op A,#n
11 lags mod 11 æd as above |

Par exemple ADD A,# 2 est équivalent à INC A
INC A

206
2Ï6

226
236

ADD
ADDC
SUB
SUBC

n

sauf que le carry est modifié lorsque l'on dépasse 377.

5.6-4

����������	������	���

���

5.7 OPERATIONS LOGIQUES

Quatre opérations logiques agissent sur les contenus des registres 8 bits du Z80:
le "ET logique" .and,'le "OU logique" or, le "OU exclusif" XOR et la comparaison
conp. Le codage de ces instructions est le suivant:

< | 260+

<1 250 +

AND A,r
IS.Z.C’ O.p.h.n-ôi

OR A,r
IS.Z.C-O.P.H.N-Ol

XOR A,r 7 States if (HL)
|S.Z.C-O.P.H.N-<Û|

COMP A,r Compare
IS.Z.C.V.H.N-lj

A
B

D
E
H

CHL)

7pOO+Opl Op
। n । hl*

246
266~

256
276

AND
OR
XOR
COMP

L'instruction and est souvent utilisée pour masquer, enlever, c'est-à-dire mettre
à zéro une partie d'un mot.Par exemple, si seuls les 4 bits de poids faible d'un
nombre dans A doivent être additionnés à un autre nombre dans B, on définira un
masque égal à 000011112 = 17ô et on écrira

MASK=- 17
• ■ •
AND A,#MASK A 10101010
ADD A,B NASK 00001111

00001010 à ajouter à B
Le and est une sorte de passoire qui ne laisse des bits à l'état 1 que là où se
trouvent des 1 dans le second opérande. Souvent on ne laisse passer qu'un seul
bit ét le flag EQ (equal) permet de savoir si ce bit est égal à 0 ou 1.

L'instruction OR permet de faire le OU de deux mots binaires. Elle est souvent
utilisée pour forcer à 1 certains bits, et s'appelle BIS /Bit set/ sur certains
processeurs.(PDP 11,...).

OR A,#SBIT A 01011010
SB!T 11000000

11011010

L'instruction XOR est utile dans certaines opérations de contrôle (elle inverse
les bits sélectionnés par un masque), et pour remettre à zéro les registres.

XOR A,A A 01100101
A 01100101

00000000

Lors de l'emploi des instructions logiques, il est utile de pouvoir modifier le
carry par les deux instructions

<1 67 ~|

77

SETC Set carry
IC-1.H-0.N-0)

Clear Carry with e.g. OR A,A instruction

CPLC Complément
|C-C1H!.I+-0| carrv

L'instruction clrc /clear carry/ n'existe pas car les instructions or a,a et
AND A,A ont cet effet, en agissant toutefois simultanément sur d’autres flags.

5.7-1

����������	������	���

���

I
I
I
I
I
I
I

5.8 INSTRUCTIONS DE DECALAGE

Quatre instructions d'un byte permettent de décaler à gauche ou à droite
le contenu du registre A, en passant par le Carry ou non. Ce sont:

4 7

4 27

RL A
IC.H-0.N-0]

RLC A
iC.h-0.n-0|

Rotate lef t

Rotate lett through rarry

41~ 37

RR A
|C.H-0.N-0|

RRC A
IC.H-0.N-0|

Rotate right

Rotate right through carr

Rappelons que ces instructions sont utiles, par exemple, pour diviser ou
multipl ier par 2.

EXEMPLE: Ecrire un programme décalant HL à droite (divise par 2).

Le programme transfère successivement H et L dans le registre
A, dans.lequel le décalage est effectué. Le bit de droite de H
est sauvé temporairement dans le Carry au cours de l'opération.

I
I
I
I
I
I
I
I
I
I

LÛAO
RRC
LOAD
LÛAD
RRC
LOAu

A,H
A
H, A
A, L
A
L,A

Il faut noter qu'avec ces instructions, la valeur préalable
du Carry C se trouve dans le bit de poids fort de H.
En général, au cours d'un décalage à droite, on impose que
le bit introduit dans le poids fort soit 0. L'instruction
OR a,a qui ne modifie pas A, mais force la carry à 0,
doit précéder les 6 instructions ci-dessus.

Dans le Z80 des instructions de décalage ont été ajoutées pour tous 1^' rec/stres
Ce sont:

313
40 +

R L r
[S Z.C.P.H- O il 01

RLC
IS.Z.C.P.H--0 N-0|

313
304- ;

RR r
|S,Z.' +.H-0.N-

(S.Z.C.r.H-p.N- 0| SIlift right though carry

AS R' r fU h
|S,Z.C.P.H* Wl ArithnielæshiR right

A
D
C
D
F
H
L

5.8-1

����������	������	���

���

5.9 INSTRUCTIONS DE SAUTS CONDITIONNELS

En complément des instructions jump m,
précédemment, on trouve les instructions

JUMP , + t' et DECJ,NE B..+Î' étudiées
de saut conditionnel suivantes

JUMP.t m
Jump if test t true

O

10

20

30

60

70

40

50

NE
ZC
EQ
ZS
HS
CC
LO
CS
PL
SC
Ml
SS
VC
PO
VS
PE

Non equal | Z=0|
Zéro bit clear
Equal (Z=l |
Zéro bit set
Higher or same
Carry clear
Lower
Carry set
Plus (positive)
Sign bit clear
Minus (négative)
Sign bit set
Overflow bit clear
Pari ty odd | P-01
Overflow bit set
Parity even |P= 1 j

t'
JUMP,t' . + 2'

(relatif)

o

10

20

30

NE Non equal (Z=0|
ZC Zéro bit clear
EQ Equal |Z=1|
ZS Zéro bit set
HS Higher or sanie
CC Carry clear
LO Lower
CS Carry set

V 8-bit displacement in jumps relative to
first byte of the instruction
0 to 201 positive, 377 (-1) to 202 (-176) négative

F Flags
S Sign bit
Z Zéro bit * * • • • • w •
P Even parity bit
V Overflow bit
C Carry bit

Les instructions de saut conditionnel donnent
Selon l'état des flags, le saut s'effectue ou
faite, on continue à l'instruction suivante),

toute la puissance à la programmation,
non (si la condition n'est pas satis-
avec les possibilités suivantes:

JUMP,NE
,ZC

saut si le flag Z n'est pas nul /non equal/, c'est à dire tant que le contenu du regis
tre modifié précédemment par une instruction arithmétique ou logique n'est pas nul

JUMP,EQ
,ZS

saut si le flag Z est nul /equal/, c'est à dire si le contenu du registre
modifié dans l'instruction précédente est nul.

JUMP,CC
,HS

JUMP,CS
,L0

saut si

saut si

le bit de poids faible du

le bit de poids faible du

registre F (flag C) est nul

registre F est 1 /carry set/

/carry clear/

EXEMPLES Le programme suivant calcule la somme des n premiers nombres entiers.
Le nombre n est dans le registre A, la somme chargée dans A également.
Le programme signale s'il y a dépassement de capacité

SOM:

S02 :

LOAD
LOAD

B, A
A,# 0

ADD A,B
JUMP,CS DEPCAP

DEC B
JUMP,NE S02

DEPCAP:
TRAP
TRAP

B contient alors n
;A contient la somme partielle

; décompter
;test de fin DECJ,NE B,S02

;A contient la somme

Le programme suivant additionne le contenu de HL avec un nombre
positif donné (égal à 12345, par exemple).
L'opération s'effectue en deux temps, en passant par l'accumulateur.
Le nombre 12345 doit être fractionné en deux bytes au moment de
l'addition 012345 = 024-345.

SOMME : LOAD A,L
ADD A,#NBRE8377 jprend les 8 bits de poids feible

345
LOAD L,A
LOAD A,H
ADDC A,/Z NBRE/4O(I ; prend les 8 bits de poids fort.

24

LOAD . H,A
J UNI’, CS DEPCAP

5.9-1

����������	������	���

���

I
I
1
I
I
I
I
I
I
I
I
I
I
I
I

La multiplication de deux nombres peut se faire d'innombrables façons,
selon l'algorithme utilisé, la précision voulue et les registres utili­
sés. L'algorithme le plus simple consiste à remplacer la multiplication
par une suite d'additions (valable pour des nombres entiers seulement).

Par exemple, pour multiplier deux nombres 8 bits dans A et B, il y a
avantage à faire apparaître le produit dans HL et à utiliser l'instruc­
tion ADD HL,DE. Le deuxième nombre est utilisé comme compteur de cycles
et il ne peut pas y avoir de dépassement de capacité.

MULT: LOAD
LOAD

E,A
D,# 0 ;DE contient le premier nombre

LOAD HL,# 0 ;HL accumule les sommes partielles

HUL1: ADD HL,DE
DEC B
JUMP,NE MUL1

TRAP

; recommence tant qu'il
;pas eu B additions

n'y a

La routine suivante multiplie un nombre 8 bits par un nombre 16 bits
et génère un résultat 24 bits, donc sans dépassement de capacité. Cet
algorithme est l'algorithme rapide d'additions et de décalages, les
opérations élémentaires se faisant par mots de 16 bits entre HL et DE,
avec sauvetage des bits de dépassement de capacité dans A.

NUL:

MUL1 :

MUL2:

LOAD
EX
LOAD
ADD
RLC

B,# 8.
DE, HL
HL,# 0
HL,HL
A

JUHP.CC
ADD
ADDC
DECJ,NE

MUL2
HL, DE
A,# 0
B,MUL1

{compteur des 8.=10 cycles de décalage
; échange pour avoir le 2e nombre dans DE
; initialisation du produit partiel
{décalage de HL
{overflow dans A et transfert du bit de poids
,-fort de A dans le Carry
{saut si le bit de poids fort est nul
{ addition
; transfert de l'overflow éventuel dans A
{si pas terminé, recommence un cycle

TRAP

Il existe d'innombrables algorithmes de division, dont l'algorithme
par soustractions successives, qui est laissé comme exercice.

L'algorithme ci-dessous utilise des comparaisons et divise un mot de
16 bits par un mot de 8 bits, avec un résultat de 16 bits et un reste
de 8 bits.

DIV:

DIV1 :

DIV2:

LOAD
XOR
ADD
RLC
COMP
JUMP,CS
INC
SUB
DEC
JUMP.NE
TRAP

C,# 16,
A,A
HL,HL
A
A,B
DIV2
L
A,B

DIV1

.•compteur de cycles
jclear de A
; décale HL et
;transfère le poids fort dans A
; compare: peut-on soustraire B ?

;oui placer 1 dans le poids faible
{effectuer la soustraction
; terminé ?
jsinon, recommence un cycle.
; f 1 n

5.9-2

����������	������	���

���

Voici encore un exemple de programme, qui
comptage-décomptage.

effectue la conversion binaire-décimale par

HL : Nombre binaire donné
DE : Nombre décimal calculé

O

Algorithme décompter dans HL en binaire. avec test de fin-
compter dans DE en décimal.

CONV:

ERROR:

DEC
INC
LOAD
DAA
LOAD
LOAD
ADOC
DAA
LOAD
JUMP,CS
LOAD
OR
JUMP.NE
TRAP

HL
DE
A,E. ?
A II

E,A
A,D >
A,# 0
A
D,A
ERROR >
A,H
A,L
CONV

Correction de DE

Exemple :

2 9

| 00101 100~ï]| 1001 11001

0010 1001 II 1001 1010

| Carry___ ^AA
I I 0000 I0000 I

001011010'

y)AA
0011 !oooo

0 03

Comme l’instruction OR
est à 0 si le résultat
binaire donné > 23420)

A,L met le carry à 0, on est sûr que le carry final
est correct, et à 1 si le résultat est faux (nombre

5.9-3

����������	������	���

���

Les quatre autres catégories de sauts conditionnels n'existent que pour
des adresses absolues.

JUMP,SC saut si le résultat précédent est positif /sign clear/
>PL /plus/

JUMP,SS saut si le résultat précédent est négatif /sign set/
>MI /minus/

JUMP,P0 saut si la parité du résultat précédent est impaire /parity odd/
,VC saut s'il n'y a pas eu dépassement de capacité sur les nombres

arithmétiques /overflow bit clear/

JUMP,PE saut si la parité du résultat précédent est paire/parity even/
,VS saut s'il y a eu dépassement de capacité sur les nombres arithmé­

tiques /overflow bit set/.

EXEMPLE: pour convertir un nombre arithmétique (en complément à 2 s'il est
négatif) en une valeur absolue (dans A) et la valeur 0 ou 1
selon le signe (dans B), on peut écrire:

CONV: LOAD B,# 0
OR A, A
JUMP,PL CONV2
NEG A*

INC B
C0NV2:

; charge les flags selon A

; complément à 2
; charge le signe

Comme autre exemple, considérons un programme qui lit une ligne genre
télex. Toutes les 20 ms, un "un" ou un "zéro" est transmis sur la
ligne. Des "zéro" remplissent les silences, et un premier "un" /start
bit/ marque la fin d'un silence et le début d'un mot de 5 bits corres­
pondant à un caractère. Chaque mot est suivi d'un silence (zéro) de 1
bit au moins.

Exemple de message:

1er caractère 2e car. 3e car. 4e car.

Une routine BIT, non écrite ici car elle dépend de l'interface avec le
télex, lit l'état de la ligne et met le CARRY à un si la ligne est à "un"
et à zéro si la ligne est à "zéro". Une routine CARACTERE forme un mot de
5 bits une fois que le premier bit (start) a été reconnu. Le programme
principal donné en exemple passe par-dessus les silences et attend un carac­
tère spécial de début, par exemple 10101 = 25 octal.

5.9-4

����������	������	���

���

-TITLE TELEX
LONG= 5
CARDEB=25

; attend un caractère de début
; nombre de bits par caractère
; caractère de début de message

;---- sous programmes

BIT: ---

RET

CARACTERE:
LOAD
LOAD

CAR2: CALL
RLC
DEC
JDMP,NE
RET

;selon l’interface
; cette routine ne peut
; retour avec CS (carry

modifier que A et B
set) si le bit vaut 1

C># 0
D,# LONG
BIT
C
D
CAR2

-,----- PROGRAMME

TELEX:
CALL BIT
JUMP.CC TELEX

;le bit vaut 1,

; registre caractère
;compteur de bits par caractère

; décalage de Carry dans C

; retour avec le caractère dans C

;saut si la retenue est nulle

c'est le début d'un caractère

CALL CARACTERE
CALL BIT
JUMP.CS ERROR jerreur si le bit lu vaut 1
LOAD
COMP

A,C
A,# CARDEB

JUMP.NE TELEX ; retour pour attendre le caractère suivant

; suite du programme lorsque le caractère de début est trouvé

;action en cas d’erreur (pas de silence à la fin d'un caractère)

ERROR: - —

5.9-5

����������	������	���

���

5.10 ACTION SUR UN BIT DETERMINE D'UN REGISTRE

Il est possible de tester, mettre à 0 ou à 1
par les opérations suivantes

le bit b d'un registre r

313
300 + +

SET r:b
Set bit b of register r

313
15| 200++

CLR r:b

8 r 313

I? 100 + +

15 States if SET (HL): b
or CLR (HL): b

TEST_ r:b
|S’.Z-r b,P* ,H—1 ,N—0]

12 States if TEST (HL) b

7
0

2
2
3
4
5
6

A
B
C
D
E
H
L
(HL)

b o
îô

20
30
40
50
60
70

0 (2°=1)
1
2
3
4
5
6
7 (27=200)

Par exemple, si lorsque le bit de poids fort (bit 27) d'un nombre est à 1,
on veut forcer le dernier bit à zéro et l'avant dernier à 1, on peut écrire

TEST
JUMP,EQ
SET
CLR

A:7
NEXT
A:1
A:0

;si le bit est 0, on ne change rien

NEXT :

2
Le bit 2 = 4 du registre de Flag F peut avoir deux significations selon 1'instructior
précédente. Dans certains cas (and, OR, xor, test), c'est la parité du résultat
(P vaut 1 si le résultat est pair); pour les autres instructions modifiant les flags
c'est l'overflowMV", c'est-à-dire le dépassement de capacité dans une opération
arithmétique sur des nombres en complément à 2.

Par exemple, si l'on additionne 123 (positif) et 76 (positif), le résultat
de l’additionneur n'est pas valable et le flag V passe à 1.

Ainsi, lorsque l'on travaille avec des nombres positifs uniquement (nombres logiques)
JUKiP-CS /ju^P if carry set/ signale un dépassement de capacité.

Avec les nombres arithmétiques, c'est jump.vs /jump if overflow bit set/
qui signale un dépassement de capacité.

5.10.1

����������	������	���

���

5.11 ADRESSAGE INDEXE

Quatre modes d'adressage, c'est-à-dire façons de spécifier où se trouve l'infor­
mation considérée, ont été rencontrés dans les précédentes parties. Dans le
mode registre, le numéro du registre qui contient l'information (70 pour A, 0 pour
B, ...) est spécifié dans le code même de l'instruction. Dans le mode immédiat,
l'information se trouve dans le 2e byte de l'instruction (où dans les 2e et 3e).

■ Dans le mode absolu, l'adresse complète de la position mémoire contenant l'infor­
mation figure dans l'instruction. Dans le mode relatif, c'est la différence entre
l'adresse courante (adresse contenue dans le compteur d'adresses PC) et l'adresse
de la position mémoire contenant l'information qui est donnée dans l'instruction.

Dans l'adressage indexé, l'adresse de l'information se trouve dans le registre HL
et l'on écrit load A,(HL) pour dire que le contenu de la position mémoire dont
l'adresse est dans HL est transféré dans A. La parenthèse autour de HL indique
que le contenu de HL est une adresse; LOAD A,HL voudrait dire que le contenu de
HL est transféré dans A, sans passer par une référence mémoire (cette instruction
est par ailleurs absurde car A a 8 bits et HL 16 bits).

Adressage indexé

Les instructions disponibles sont les suivantes:

A

1064 LOAD r,(HL)
Load r indexed

O
fïô

>| 160 + LOAD (HL),s 10 66 LOAD
301
40 !
5ü1

D
n

Exemple:
Le programme suivant remplit toute la mémoire de caractères 40 (espace
en code ASCII). Le principe utilisé est d'écrire dans les positions mémoire
successives en relisant chaque fois. Si la comparaison montre une
différence, c'est que l'adresse ne correspond plus à de la mémoire
(ou que la mémoire est défectueuse 1). En général une mémoire inexistante
apparaît comme contenant uniquement des 000 ou des 377.

INIM:

INI2:

LOAD
LOAD
LOAO
LOAD
LOAD
INC
COMP
JUMP.EQ
TRAP

A,// SPACE
HL,DEBMEM
(HL),A
B,A
A,(HL)
HL
A,B
IN 12

; sauve, A dans B pour comparaison ultérieure

; retourne initialiser la position suivante
;si égalité, Ginnn retourne au moniteur

5.11-1

����������	������	���

���

Le sous-programme suivant est équivalent, car inc HL ne modifie pas
les flags.

INI2: LOAD (HL),A
COMP A,(HL)
INC HL
JUMP.EQ INI2

Etudions en détail un dernier programme, qui additionne n nombres
dans une table.

.TABLE :

RESULT:

DEP :

n nombres de 8 bits consécutifs dans une
zone mémoire à partir de l'adresse TABLE

résultat 8 bits dans le mot d'adresse RESULT

mot mémoire indiquant un dépassement de capacité

Principe

si (DEP) = 0
si (DEP) = 1

résultat correct
résultat incorrect

L'adresse TABLE est placée dans le registre HL
qui pointe successivement chacun des nombres de la table
lors des additions.

Coeur du programme : ADD A,(HL)
JUMP,CS ERREUR
INC HL

arrêt dès dépassement de capacité
déplace le pointeur

Il faut initialiser au début du programme le pointeur. un compteur de cycle
égal au nombre de nombres dans la table, le contenu initial de l'accumulateur
et le mot de contrôle du dépassement de capacité.

NOMBRE = 6
ADDTABLE: LOAD

LOAD
LOAD
LOAD

ADDT2: ADD
JUMP.CS

HL,# TABLE
B,# NOMBRE
A,# 0
DEP, A
A, (HL)
ERROR

INC HL

ERROR:

DEC B
JUMP,NE ADDT2
LOAD RESULT,A
LOAD A,#1
LOAD DEP,A
TRAP

FABLE :

RESULT:
DEP :

.BYTE

. BLKB

. BLKB

3,4,5,10,12,14

END
5.11-2

����������	������	���

���

Organigramme :
Initialisation
HL * TABLE

NOMBRE
DEP<-
A •+•

5.12 AUTRES OPERATIONS

NON OPERATION

L'instruction NOP ne produit aucun effet si ce n'est une attente de quelques
microsecondes. Elle permet d"'effacer" des instructions superflues lors de la
mise au point d'un programme ou de prévoir un espace pour un saut ou une trappe

POUR LES AUTRES OPERATIONS:

CONSULTER LA FEUILLE DE MNEMONICS CALM - Z80

5.12-1

����������	������	���

���

I
I 5.13 EXEMPLES DE PROGRAMMES

I
I
D
I*

SIMULATEUR DE TELETYPE SIMPLE

S
6

8
9

10

12

1OXX30

.TITLE

.PROC
•REP
.LOC

TTY1.SR

SCO

100000

l Simulateur do TTY ultra sfrapllf14

D
15
16

18
19

21

I 24

1OXX0
100C02

1C0CO4
1CC0C6
10X07

100012
100013
100015
102017
10X21
100233

016 024
347 126

347 015
107
332 027 200

34? 046

347 044
070 367
347 000
030 363

TTY»

TTY1,

TTYZs

TTY4t

LOGO C.W4-I
.U 7ID1S

.U 71FCRR
LOAD B,A
JLfP ,CS TTY4

LOAD A.B
.U 7ÏFUFP
JUbP.CC m'i
.U 7IFRFR
JlfP.CS TTY2
.W 7DICAR
jim» ma

î

l

;

I

i
t

intt écran

un cor du clavier ?
B <— ev c or a c 1ère
nen «> lit usant

essaye d'envoyer le car tout
en faisant 1'ficha de ce qui
peut fitre lu par I'usant
jusqu'à ce que l'envoi soit
fait.

100027
100031
100033
100035

044
251
«0
3*5

.U
JUbP.CS
.U
JUbP

71FRPR
TTY1
7DICRR
TTY1

4 un car do l'usant ?
non s> lit clavier

1OOO0O .END TTY

I Eaziexi 17:20:15 CROSS REFERENCE MRP 02-01

0 000020 référencés
Source file XO02S usefull lires long
Birtory file COX27 bytes long
Rssenoly tira. 0008 seconds 0187 tines/nin

0
fl

TDICORï
71D1S =
?IFOP=
71FT7r=

00024?
OS 3347
006747

000024
loeceo
100004
100013
10002?

01-0026
01-0015
01-0017
01-0024
01-0032
01-0014
01-0013
01-0016
01-C0Î0
01*0019

01-0032

01-0O30

01-0037
01-CQ23
01-0025
01-0029

01-0031 81-0033
01-0S27

û
0
fl

i
o
i
i 5.13-1

����������	������	���

���

SIMULATEUR DE TELETYPE AVEC OU SANS ECHO

0
i

2
3

G
G lOCOCO
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
S 1CWQ
24 18X02
25 lv\W
26 10CO10
27 100012
ES 1000X4
39 103816
30 10001?
31 100822
33 10C0CS

34 108030
35 10X3L
X 100033
37 10X35
33 100040
39 100043
40 1OXX5
41 1XCS0

43 10CCS3
44 1X864
45 ICOCSô
46 100061
47 10X63

49 1X063
50 10X70
51 100072
52 100073
53 1CC076
54 1C01OO
£5 1001G2

.LOC 100000

PER1PH

i Simulateur de TTY avec ou sons écho.

. Prcgranre principal. Ccrreenco par demander si on
; veut ou pas l’echo.

WVKVOl 17.22:10 CROSS REFERENCE MP

000076 référencés
Source file 088031 usefull fines long
Dincry file 000370 byles long ___
Assurhly tine. 0013 seconds 0373 llnes/Min

0
52 100104
S 1001C6
60 100111
61 10C113
£2 1X115

64
es 1X117
65 100121
€7 100123
63 100124
£3 1X126
70 10^130
71 100131
72 1X134
73 ICOîX
74 100140

77 100142
73 100144
79 1X146
eo icciso
81 100152

TTY.
016 824
347 128
347 123 204 SCO
347 001
347 OOO
346 003
117
34? 033 347 843
076 C40
315 155 200

TTYli
347 015
107
322 117 200
378 037
312 142 200
313 111
382 C53 200
315 155 2X

TTYZ.
170
347 016
322 104 200
347 044
070 363

076 805
347 080
361
315 155 200
076 004

TTY3-
313 111
312 117 200
006 012
378 015

TTY4,
347 «4
070 385

876 OCS
347 CX
361
315 155 200
076 X4
347 000
038 266

.U 7GETFCN
OObP A.CXILLiCURSOR
JUbF.Æ TTY*
.U 7R7N
JUbP 0

c J

23 IWiXA
IX 1X1E6
101 180167
182 1X171
103 1X173
104 100175
105 1X177
105 1X231
107 100303
1C3
103
110 108284
111 100236
112 188271
113 100313
114 108X1
115
118
117
lia

fl

I

LORD C.©LINES
.U 71DIS
.U 7TEXT.ECH0? ; Affiche texte
.U 7GETCAR ; Attend la repense
.U 7D1CW

AND A.03 / Masque
LOF© C.A
.U 7CALFHA. 7RETURN
LORD A.OSPFÆ
OALL PDI CW

.U 7IFCAR
LORD B. A
JUbP.CS TTY 4
CObP A.CDEFHE
JUM’.EQ HOME

C:1
TTY2
PDICAR

LORD
.U
JUbP.CC
.U
JUbP.CS
PUSH
LORD.U
CFLL
LORD
.U
JUP

TEST
JUbP.EQ
LORD
COP
JUbP.EQ

l Clavier ?
; Sauve ev. car dons B
; Go to TTV4 si pas clavier

; Echo ?
; Non. go to TTY2
, Oui, caroc sur 1'écran

A.B
7IFLFP
TTY3
?tFRPR
TTY2

A.CINV
7D1CRR

PDICAR
A.OCRM
7D1CW
TTY2

Cl
TTY4
B.©LF
A.«CR
TTY2

.W TIFRPR
JUbP.CS TTY1
PUSh FF
LOF© A.BINV
.U 7D1CW
PCP AF
CALL PDICRR
LOF© A.CNCFM
.U 7D1CAR
JOP TTY1

; Essaye d'envoyer le caroc

; Si c’était possible» go to TTY3
; Si on no peut pas envoyer, il
i faut attendre on lisant ce qui

pouvait rv. arriver.

Si on vient d'envoyer un CR,
faut aussi envoyer un LF.

; Uh caroc arrive ?
; Non, go to TTY1

; Oui. affiche carac sur I'écran

; Equivalent a 7DICW avec en plus l'affichage du pointeur.

i m
i eut

caractère à afficher

FF.DE.H.

PD! CW,
LORD
.U

LORD
.W
.U

LORD
R©
.U
.U

D.A
7GETCURSCR

LOF©

R.ttSPRCE
7D1CW
7SE7CURS0R
A.D
A,0177
7DICW
7CETCLRS0R
A. ESPACE •♦ 200
7DICW

: K. »s position du curseur

; clear curseur

) position du curseur »• HL

; suppr la pari LO

i H- i» position du curseur
; Set curseur

I position du curseur >« H»

124 145 154 145 ECHO?, .ASCII
811 868 011 156 EO-O, .ASCII
011 CCI Cil 150 ECHli .ASCII
811 062 Gll 145 0X2 .ASCII
011 063 011 145 UX3 .ASCIZ

"Teletype
" 0

1O0O0O .D© TTF

Blnviotor. lypo<CRXCR>"
no écho. LF added to CR<CR>"
no écho (fCVAKCR»*
écho. LT oddod to CR <PDPXCR>*
écho (CDCKTRD^

7CPLPH» 014347
7D!CW= 000347
XETCA» 000747
7CETCU= 020747
TGETFOs 007347
71DIS » 053317
?IFCW> 006747
7IFRPR= 022347
7IFLFP3 023347
TRETURs 021747
7RTN « 015357
7SET0J: 030317
7TEXT s 051747
CR - 000015
CLRSCR» 000108
DEFI NE» 088037
ECHO . 100236
ECM1 i 108271
£042 . 100313
EŒO i 1003SI
ECHO? i 100204
HOE , 100142
INV • 000005
KILL * 000030
LF • 000012
LUES • 00X24
NORM i 000004
PDICAR ICO155
GF ACE « CC0O1O
TAB « 808011
TTY • 108X0
TTYi . ICOOCO
TTY2 s 108053
TTY3 • 1X104
TTY4 t 1X117

01-0030
01-XZ7
01-0026
ei-oosô
01-X77
01-0034
01-X31
01-0046
01-0844
01-OCX
01-0820
01-X99
01-0025
01-0061
01-X78
01-0037
01-0111
01-0112
01-0113
01-0114
01-0C2S
01-X39
01-0049
01-X78
Cl-0060
01-C023
01-0353
C1-X32
01-0031
01-0114
01-0822
01-0033
01-0040
01-0045
01-X3S

01-0050 01-0054 01-X69 01-0073 01-0093 01-0102 01-0105

01-0103

oi-oces

01-01»

01-0110 01-0111 01-0112 01-0113

01-0110
01-&776
01-C0G8

01-X72
01-0041 ei-0052 01-0071 01-8094
01-X97 01-0104

01-0118
01-0066 01-X74 01-X79
01-X42 01-0047 01-XSS 01-0082
01-0C57
01-0059 01-0C64

����������	������	���

���

blUd 1XHN XXL CO*
$3bd ism xhl ion-

amans jt

«< u ji
3ÏW 1X34 Cl 3dt«4X)f

b 141 3A^ Abàüyf
£Sbd-lXS4 01 00;

UKTieS - tHTh^G J ‘ 03 CïGI
EcCN»«VXV4r-H Ccùl

NOZIè^cWO 1SUU SAJcGU’ C5'a CW.
SSbd 9S2 b315d Œ3CIHU* U2?J1S 03'cSmV

b DNiaaxw £tru cühz cwt u'b to
t $1 u 30 amtiA "HUtNp a*u atn

tdXCO

•ssbd
aon

rr
rr

GXH

rr
cwi

iai

����������	������	���

���

CHRONOMETRE

17 18:58 O-RCnO.SR wTNiSMPKY et DENO 01-01

100000

1CW00
1000O1
100004
100007
1O0O1X
100013
1CO01C
1WS0

100027

100041

1000=5
1CC071
1C0072
100074
1W07S

27 1301ES

53 180151
100 108153
101 1031S4
102 10O167

104 100171
1C5
10S 100173
107 100176
103 1C0209
103 100201
110 10C203
111
112
113 10C204
114
115 100295
116 10C206
117 100207
ne 10C21©
HS
120 10O211
121 1CO220
122 1«32S
1Z3 100241
124 10C257
125
126
127
123

.T1TLE Q-RCNO.SR JDN.SWKY eL DOO

.PROC ZSO

1 Dont»J ROUX 78
:
: CHROHONETRE

4 Ce slrule un chronomètre avec !a possibilité
; de prendre des terps inter«ediores •
* fonctions possibles sont les suivantes «
i _____
• -STERT de narre
i -STCP orret
• *R£SET remise a zéro
J prise d’un tenps interoedtore
*
• Les fanetiens SThRT/STQP se font avec le touche "s”.
• Ce’ deux fonction» sont effectuées altcrnaliveacnt.
• C'est le bit 2X) de FONCTION qui vaut 0 st le chrono
; est arrête et 1 dans le cos contraire.
. Les fonctions RESET/LAP se font avec la touche “R*.
• La fenetten RESET est effectuée si le chrcno est arrêta
i et lo fonction LFP est effectuée si le chrono tourne.

001 024 COO
347 020

347 021
041 SES 200

CCI 020 004
347 020
C41 CSX? 023

C41 143 200
TT

016 000

O«7O-
XOR
LO©
LO©
.U
.U
.U
LO©
.U
LO©
.W
LC»©
.U
LO©
.U

ŒR0N0:
LO©

ORCNl,
.K
OP
JOP.EQ
OP
JU-P.EQ
LC©
.U

A.A » Inil STOP
racTioN.A
BC.Q_l^S«4CCX0 ; InlL l'écran alpha
7IDICAR
2OCFVP
?l ALPHA
H..BTIN1T ; Affiche petit texte aide-
7DITEX ; mémoire
BC.KLIf€S-4«40044 ; Place pour LAP
'’IDICAR
H-.CO+KOOXLlNES-l) ; Place le pointeur tout en
?>EîlUR£OR ; bas a gauche
H-.Kr>7ErPS ; Pour routine d'affichage du

C.CO

14..KTEKRCR
7D17EX
cwaa

K.KTaCTICN
A.(AL)
A.Kl

CHR0K1

LO© H..KFONCTICN

; Peu Line d'ir.croecntattcn et

000091 F3t CT J CH.. ELK8

000
0C0
000
C00

105 122
114 101
103 110
123 072
122 072

117
040
117
123
122

TLPP-
TiniT.

.3

.3

.3

.3

.«C1Z

.P5CIZ

.RXH

.A^CII

.«XIZ

.O©

i Clear du compteur do LAP

; Attente d’un coractcre

; RESET/LAP ?

I STARTzSTGP ?
, St nen c'est une erreur

Inverse le flog STPRT

; Teste le flcg START

l Si STARTsO go to FESET
. Effectue la fonction LAP
; Affiche le mot LAP
; Irx le compteur du nb de LAP

i Affiche l'elat de ce compteur
; Effectue un ROLL sans effacer
j la fin de la ligne.

. Remise a xero des centièmes.
; des secondes et des minutes.

d’offichaga du temps.

; Test le flcg START

, Si STARTcQ, il ne feut pas
, irerenanter le temps cor le

71HCTC.7IIO10LR i chrono est arrête.

l Scwv le curseur

H_.ai0.«4O0T(LIÆS-l) ; Place le pointeur en
Ti&TCURCCR । et 10. a gauche

i Masque pour I» »

i Affichage du temps

DVKVOI 17 29:03 CROSS REFERENCE MAP

Source filo CO0G36 usefull Unes long
Dinary file C30274 bytes long
Assembly tine: 0015 seconds 0344 lines/mtn

A Cæll0003
8.
M_.dTZ?PC»3
WTIrC

0
0
0
0

; Restitution du pointeur

j Flog STfRT

. Centièmes
» Secondes
i Mif«ulos
, Heures

’EEriRtCT/*
•LfP -
-QPaOCTPC<CR>•
-s STrRT/jrûP^^)'’
"R. fEXET/UF-

7AF0CP’
TAFTIMa
VCALPH:
7DICAR»
?DITEX«
7GETCA’
7GETCU*
7IALFH’
7IDICA»
7|NCH>
7INCSE»
7IRTC »
7SETCU»
ATT1 .
fFTEhP:
O«C«Wi
OROtJl
ORO©:
CR »
AOHCTI
LINES =
fCSEl
PT.SET
RLCLAP.
STHSTO
TDP3 .
TCKRCR
TIHIT .
TUP •

046747
014347
000347
033347
000747
020742
010747
010347
045347
044747
002317
020347
100161
100142
1C0OI1
1CCO13
103X0
00OJ15
1C02C4
C00024
100133
1C01PC
100077
ICOOCO
100205
100211
1C32Z5
1C02EO

01-0075
01-0107
01-0033
01-0077
01-0041 01-0057 01-0072
01-0051
01-0099
01-0039
01-CO37 01-0043
01-0097
01-0C97
01-0047
01-0045 01-0102 01-0109
01-0095 01-C038
01-0046 01-0032
01-C048 01-0037
01-0CE9 01-0059 01-0065 01-0078
01-0033 01-0128
01-007G 01-0130 01-0122 01-0123
01-0025 01-00Û1 01-0063 01-0093 01-0113
01-0026 01-0042 01-0044 01-0101
01-0033 01-0028
01-0070 01-C03O
01-C053 01-0067
01-C0C3 O1-OOC0
01-CC31 01-0033 01-0106 01-0115
Ol-OO^ 01-0120
01-00-10 01-0122
01-0071 01-0121

5.13-4

����������	������	���

���

129
130
131

133
131

TEST MEMOIRE VIVE
136
137
133
139
140
141
142
143
144

OU4S7
041 4 GO
0414G3
O414G4
041465
041466
011467
011470

ICO
042 210 103
013
004

172

C4O

REMIT.

LWD

ne

œc
LORD

01-01

(H-).O
ECRIT,H.

D

A.D
A,G

146
147
148
149
150
151
152
153
154

041473
011474
0)1475
011476 101

FL» SH
PUSH
LOAD

6

Récupération odr long.

041477
041560
041E03
041504

176
042 212 103

121 103

LOAD
LOAD
ca<p

A.(H_)
RELU.H.
A.D

8
9

10

12

ooiooo

utilisant le sipténe avec jolie mise on page

■ lOCO
15
16

8

20 O41CO0
21

43X50

j Adresse du (RAM ou ROM)

testable

; Dons l'écran
i (augmente la zone testable)

156
157
158
159
160
161
162
163
164
165
165
167
168
169
170
171
172
173
174

CONTI.

31

041003 102 TRAM

015
145
124

163
145

164
TEX1L;

04iceo
041077

041133
041150

011
011
015
101

116
011

142
1rs
040

101

ASCIZ
ASC 12
ASC1Z
ASC 12
ASC 12
ASCIZ
ASC 12

<CR>Test de (>*43000)

“<CR>Fb de passes.
•<TABXTAB>Erreurst
•<TRB> Duree » •
•<CR>Adresse Relu
"Adresse incorrecte

Début

061
001 010

020

les
003

003
49

LOAD
LOAD
.U
LOAD
.U
LOAD

7IDICPR

7D1CPR

8

Effacement de cette zone

041247
100
000

7DITEX
71 MO)

106 LOAD
.U

Donnée premer argument

103 ERLEC

150

Si non, retour
Adresse de début

Donnée 2e argument

Calcul longueur â

077 1C2

103

FVSM
LOAD
.U
.U
LOAD

7D1TEX

Coordonnée do passes

.U 7DITEX

103 Coordonnée

04

LOAD
.U
.U
LOAD
LOAD
.U

7DITEX

7DITEX

Coordonnée durée du test

LOAD
LOAD

LORD
INC

103

Table scc-mln-heuros
Longueur do la table

LORD
.U
ION

71RTC

91 LORD
UjPD Compteur

de passes
d'erreurs

004 BC, tu 144400
7IDICAR affichage des erreurs

041
RCAIN.

L6R)
LOAD
.U

SP/PO INT, FL

Déplacement du pointeur

1C3 PXH

10 LOAD
.U

%Ol>L Affichage compteur de passes

114

11G

112
:i3

041423

€>.1433

102
123

.U
LOAD
.U

.PDX
LCAD

000010

^<00 L

2
A.eiÿaloocoo
8.

Affichage compteur d'erreur

.U
LOAD
.U

FL.SAVPùnn’
7ŒTCLP50R

Affichage du temps

PélobI insérant pointeur
123 ION

POP Récupération adresse et

ICI UZ«D

OHS07
041510
041511
041512
041513
011514
041516
041517

041521

011524

041530

175 041531

178
179
ISO
181
182
183
184

186
187
183
189
190
191
122
193
194
195
196
197
193
199
200
201

207

210
211
212
213
214
215
216
217
218
219

172

040
014

347
317

347
170
347

361

102
042
070

070

INC
INC
DEC
LOAD

INC

Erreur

PUSH
.U
.U
.U
.U
.U
LOAD
.U

LOAD

D

A.D

AGAIN

7RETURN
TATMOH.

7AF0IN

A.D
7AFD1N

En car d'erreur, affichage

adresse

contenu théorique

conlonu effectif

041541
0)1542
041543
041544
041945
041546

041550

041561
041564

041571

041574

041601
041602

O41605
041607

011610
041612
041614
011616
041620

041624

COI

041

041

041

347
311

000
COO

000
000
000

010 000

0Ô2

243

112

113

000
000
000

000
000

000120

102

102
102

103

041224

ION

INC

CONTI

Erreur

LOAD
.W
LCAD
.U
LOAD
.U
LOAD

de donnée

71D1CAR

7D1CAR

7DITEX
H-.IITEXll
TRA2

haut

Routine

LOAD
.U

U

U

en

H..ÜTD-FS
7INCSEC

71NCHXR

7INCDAY

ECRIT; ,U
RELU; .U
SAVPOJNTi.U

ERREUR:
U
U
w
BLKU

0
0
0
0
0

TE>FS

END TRAM

168 usefull lires Idhg
624 bgtes long
0C20 seconds 0604

Pointeur
Pointeur

Pointeur

Pointeur

courant
aff. nb do poses

TAFBIN*
TArMOHs
TATTlMs

7DICRR=
7DITEX»

7IDICAc
7INCDA»
7INCH0»
7lNCfE«
71lMuN«
7IRTC »

PCRIM {

CLEASUs
COHTI

tco
LC IRAK .
DEPL •
dupec .
ECRIT ,

EKLEC
Er«t‘ R.
r.nrow

KLU

envi’oi
stop; :
tau «

Tl XIJ

034347
041347
046747

O00347
003347
020747
010347
045747
0-4 5347
044747
010347
002317
021747

C21347
041400
041477
000002
041507
O00015
041000
043000
001OOO
041G22
041610
042400
OHG50
OH 620
OHG21
OH571
000003
00000b
04101G
041UI2
OH 472
040000
OMIH4
OH 45 ’
OVOI I
011674
OHOOJ
011033
011060
0-11077

OH

01-0173 01-0176
01-0107 01-0113
01-0120
01-0054
01-0040
01-0051

01-0195

01-0072

01-0171

01-0046
01-0209
01-0207
01-0205
01-0052
01-00B8
01-0170
01-0104
01-0172
01-0100
01-0151
01-0047
01-0156
01-0032
01-0028
01-0016
01-0014
01-0077
01-0134
01-OO-14
01-CC55
01-0073

01-0067
01-0076
01-0193

01-0071 01-007S 01-CC79 01-0197
01-0101

01-0059

01-0111
01-0174
01-0164
01-0162
01-0194
01-0184
01-0034

01-0115 01-0122

01-0053
01-0020
01-0114
01-0214

01-0219

01-003?
01-0173
01-C0O2
Ol-OüCD
01-0153
01-014?

01-0064
01-0110
Ol-OlGO
01-0203

01-0191
01-0218

Ol-OllC
01-0103 01-0217

01-CIO?
0I01C
oi eu »•;

Ol-OO H
«I -00 IJ
oi eau
01 00 H

Ci COM

oi-oo in

Ol -003 I

01-0121
01-0140

01-0216

0I-Oll(i
ui-otuy
01-0108
01-CfM*
OI-C014.

Ot-OOM
01 • 007(1
m-oru
0l>01‘rj
oi-ocnn
01-0013

01-0201 01-aTÛ 01-0221

����������	������	���

���

FILE COMPRESS

SO/03'17 08.53 37 FILE-C^FRESS

3
4
S
6

3
g

10

SXÛ ; SbFKY 6 System
e^&3'17 03 £3.42 CROSS REFERÛHCE MAP

13

SVC9 17 03 S3 37 FILE-COPRESS

thts rr-egrcri 13 designed lo ccmpress source files
by put ling lhe curricge return <1£> jusl after th»
lest stgmficonl charcuter of eoch lino,
input and cutpul ftlc» are different enobling a
vosy comparison ofter wcrK os boen donc.

COOCâ*" refcrcrces
Sourc. file C0W7S usefull linos long
Binon: file OC04C4 butes long
Assert)y Ltxc C01O seconds 0450 linesZmin

PRÛGSAM

C15 Ô1E CÎS 1C7
015 C15 K'F 151
ecs en en 122
ato 1E3 ÎE2 1E7
€15 C15 eis OIS

.S3TTL FROGVM

.LOC 53CC0

001 CQ4 CX»
START»

LOAD
.U
.U
.U
.U
.U
.U
EX
.U
JUbP.CS
LOAD
.U
.U

.U
JUbP.CS
LOAD

LOC?»
LORD
LOTO
.U
JUbP.CS
LOAD
LCAD
LOkD
CP1P
DEC
DEC

LCPli
LCAD
DEC
CCbP
JUbP.EQ
CO^
JUbP.EQ
INC
INC
LCAD
LCAD
LCPD
.U
.U
LOPD
LCAD
.U
JUbP.CS
JUbP

LEKD.
cap
JJbP JE
lgad
.U

.U

.U

.U

BC.BZO.
7IDICPR

?1ALF*!A
77EXT.TFEG
?TEXT,TlbFlL
TGETLIbE
H_.EE
70FEN
ERRCR
INCH.A
TTDCT.TOtnFlL
TGETLlfE
H..EE
7CKEATE
ERRÛR
0UTCH.fi

AJNCH
DE.CLUTTER
TRDLItE
L£>O
H. .KE-UFFER
BC.U2C0
A.CCR

H_

A. (HJ

A.«TAB
L0P1
A.ftSFACE
LCP1

(HJ.tXR
H..CDUFFER
B.CCR
7DITÛD
VkcJURN
DE. r. CUTTER
A.CUTCH
TtPLllE
EEROR
LOCP

A.üERECF
ERE OR
A.INCH
7CL0SE
A.CUTCH
7CL0CE
TTtXr.TÔND
7RTN

TltFILf .ASCIZ
TOUTFILr .AXIZ
7EEG .fiSCH

.ASC1Z
TOC: .PXCIZ
l'Oi .DLKD
OJTCH .UXU
rjFFER. .ELXD

TEFP'R
7RTH
EFRW

; mil a full wlndow on
; screen

» display tho liltle lext

; end gel input filcnaro

; cpen file for rcad.ng

; end seto chcnnel nu-ter

. gel culput filencmo

; open fer triling

, end savo channcl r.unbor

. rood cr.e lino from file
» into buffer

; soarch lhe CR in tho buffer

; end adjust pointer le last
. supposcd valjd char.

; folch lhe charucler

; tf oilhcr a lob cr a spaco
, wo skip over

adjust pointer lo cr new
position
end u*île new CR

. disp!ny lino en screen for
; operotor's egreemsnt

; and wrile tho neu Hne to
i tho oulput fîle.

thts wi 1i bo denne o lot

if net en EGF il's on orror

job ls ended. closo input
and outpul files

displey terminal taxi
and gvt Lock lo CLI

z<CPXCRXO?x;tvu input file namo» Z
✓<CPXCr'îGiva output f.lo npmo- z
z<0£X*4XTA3><TTO>^3u.xo corposlificolionz
z pronram versicn 0*0z
z<CP><G’:XCR><CR>Prccran euicossfully cndcd<CR>z
1 , input chonnol nurijer
1 ; output chennol nurhor
203 i lino tuffer

.DO STFPT

TCLOiT s
TCEEfT»

LOOP
L0P1 ,
OUTCH .

START ;
TA3 s
T£EG •.
TOC •
TL’lTIL.
TOUTFk

TCLE^-

O00O1S
C00>30Ô
053173
C 33404
053146

CSS405
020040
C52.^0
C2CO11
Câ3Z65

C532O1

O2-0COS
C3-0257
cz-eæo
CÎ-O04C
C3-C.C4
€2-0012
C2-CCC^
a?-oco5

cc-eoôi cz-ccrs
C2-0C10 02-C0Î1

C2-W25 02-022'J
02-0371
©2-0030
C 2-0254
02-0015
C2-001G
(2-0027
(«2-0023
02-COM
02-0022
02-0023
C2-CCCÔ
C2-C032
C2-C010
02-0050
02-0011
C2-C017

02-0017 C2-0CCO

02-0044 03-034S 02-0076

02-0043 02-0O45 02-0063 02-0070 02-:0a73

03-0021
C2-CC24

02-WE2
02-0023
02-CC49

C2-C073
C2-C071
02-0071
O2-C073
C2-CC69
C2-C070

02-0051 02-0055 ©2-0063 02-0366
02-0056 02-0074

C2-CC40
02-0053 02-0075

5.13-6

����������	������	���

���

0UTCH.fi

COMPARE DEUX CHAINES DE CARACTERES

iDonlol ROUX 1S.2.CO

OC0OOO BCARRY
00CCCC DZÛRO
COOC03 MMST
000005 £FIM

> flog corry de F
l flog zéro de F
; caractère *- trouve
i comparaison terminée

n

.Ccrpare deux chaînes de caractères, l’une pouvant contenir une

.infornaiion incomplète, a savoiri
« *• r erp lace une chôme quolcanquo (evonluel luirent nulle).
i *1 remplace un caractère quelconque.
.Les majuscules sont équivalentes eux minuscules dans la
jccrparaisan.
i
i»n H. pointeur chaîne contenant *- et ’X
• DE pointeur autre chaîne
i
;out EQ (DE) strictement égal a (HL)
• CE (DE) inclu dans (HL)
> CS (DE) different DE (K.)

COPST»
ceocwo 30s
OOO0O1 325
00«02 345

365
«CCO» 016 ceo
«VXb 313 XI

CPCMO

PVSH
PUSH
PUSH
PUSH
LCAD

jTest si
TESTFIN»

le caractère dans A est un terminateur•

i
i

TEST
JOP.bE
LOAD
CûfP
JlbP.tE
LQF0
COP
MP XQ
l)C

CîEAMYST
CPCH1
A.(rt.)
A.«'-
cpaa
A.(DE)
A.fc'-
CPCH1

CtBAN/ST

; clcar tous les flans
i sels (Eû)

i *• trouve ?

; non e> y a-t-ll un en (FL)

; aussi un *- en (CE) 7

CPCHlt

CFCHE»

PUSH
FUSH

; si eut. FL pointa suivant et
; indique un *• trouve.

; sauve FL cl DE

000242

310
015 COP

RET.EQ

311

A,HCR

A.A

coupez ici pour pouvoir utiliser COPST f

o

i

00X-*
(XXV4Z
CCCC4S
000^47
C0«53
000753
0O5SS
ooxeo
eoeccz

coton
00CSS6
C0C071
oucor4
0.XO77
0C01C?
WOim
CCC1C3
CCOlCô

Où?.': i
00-114
Cuur.6
«0117

0
COO.32
O0O134
«0’27
«>•’ 40
«0143

C»146

0001 fO
«C151
000:52
000154
0.0156

O«’C1

«n 171
0CO1X'
«^173

C«177

©«-£?£

«%2v7

I

315 EX CC3
312 132 CCO
315 225 0OO
107
176 gc^
332 122 «0
170
376 052
212 126 C«
313 261
£57
303 126 040

315 225 «0
270

0«!£S
000^7
«0130

313 131
312 146 c:o

313 XI

341

313 301
513 2£1
X3 202 «0

313 131
312 210 OOO

cpoei»

CPCH3

CFGH33!

CFOS

œa<a

CPCH3

CPGK3;

LOO
CALL
JUM’.EQ
COP
JOP.Æ
LOAD
COP
JXP.EQ

JUP

load
CALL
JOPXQ
ŒLL
L0A3
LOAD
COP
.OF.IX
LOAD
COP
JUbPXQ

/OR
JU>P

CPU
COP

INC
INC
JOP.EQ

TEST
jop.eq
LOAD
CALL
JOP.hE

LOAD

A.(FL)
TESTFIN
CPOS
A.K*»
CPCH21
A.(DE)
A.»’-
CPCH23
CiBZERO
cpœg

A. (DE)
TESTFIN
CPCH3
MlbM^
B .A
A,(PL)
A.a’x
CPOG2
A.B
A.B'X
CPCH23 •
CBZERO
A.A
CPOC3

MltrAJ
A.D

croc

cxwrrST
CPCM32
A.(DE)
TESTE IN
CPCH33

C. EFINI

A.(DE)
TESTFIN
CPCH3
c.bfini

AF
AF
C DCAPRY
C BAflYST
CPCH3

C DWHtT
CPOO
DE

C EFÎHI
CPCHO
AF
B, A

Dû

d-:

fin chaîne pointée par H- ?

; fin comparaison partielle 7
j nen c> cpchZl
j ♦- on (DE) 7

; oui «> ccrcatcres égaux
; non «> chaînes pas cgalos

; fin chaîne pointée par DE 7

; B <•• raj. pointer per DE
; A <— car. pointée par K.
; 7

; cira ()E) si HL pointe 'X et
; que DE ne pointe pas *X.

, A <•• moj. pointée per DE
; ccmesre les deux ccroeleres

eveneo les pointeurs

; caractères égaux ?
; non
i trouve ?
, nen •> set bftni
i cui c> chcino (DE) finie 7

; sot bflnl si (DL> fini ou
; trouve.
; chaînes partielles pas égalas
; restitua HL et DE.
j sole (CS) al
; clrz (bE).

I (H.) fini
i (De) aussi fini 7

i non c> chaînes differentes
i (CE) et (H-) fini => sel bfinl
; chaînes partielles égalés.
; pops bidon peur ce»porter les
• pops H. cl DE.
; clrc (CC)
, or.r.ule le trouve

; si *" trouve et chaînes pos
i égales «> INC DE (chercha
i plus loin).

; roconnrnte jusqu'a ce quo ce

i restitue HL ol IC

; push A rt fl*s*3 nclvcl lenant
* dent. DC <. t p:p cf.
, restftue ! C

.Convertit le corsetera dans A on ^i.’uceulv.

000243
0C0245

0C0247
«0251

W0377
000302

C00307
000311
000333
COO32S
000340
0OO343
000346

000X1
000353
000416

000420
0OO422
000(50

000453
©C04ES
CXS17

016 C24
347 126

347 043
347 IX
103 1E0
347 005
021 122
COI ICO
355 250
347 IX
103 150
347 CCS
C21 122
315 CC0
312 063
322 020

347 IX
005 143

347 IX
CCS 143
303 247

347 IX
C05 143
303 247

141

001
COO

141

001
000
001
001

150

ISO
000

150

151

151

141

141

141

iPropromo de lest pour C0R<ST.
TEST.

LOAD C.CM.I
.U 71D1S

LOOPt
.W 7RETURN
.U 7TEXT1M
.ASC1Z zChaino sans *-* «Z
.U TCETLIhC
LOAD LE.MEtFFER
LOAD BC.U64.
LDIR
.U 7TEXTIM
.RSCIZ /Chaîna avec »/
.U TGETLIKE
LOAD DE.W31FFER
CALL COPST
JUHP.EQ AEQ
JLMP.ee ACC

.U 7TEXTIM

.ASCIZ -/<lNV>chair»rs strictement dlfforantes<NCR‘0<CR>/
Jt*P LOOP

.U 7TEXTIM

.ASCIZ AIHWchainus 3OHblab)es<N0R<><CR>/
JDP LOOP

AEQ.
.U 'TEXTIM
.ASCIZ /<lN7)chatnes 3 trie tarent sortolablesCCKT’XCR)/
JlbP LOOP

CT01C0 CUFFER. .DUO 64.

0C0243 .Q® TEST

000115 référencés
Source filo CC0145 usofull 1 mes long
Dinory fila C0C522 bytes long
Asserbly lime Cvl3 vaconds C6C3 llnos/min

5.13-7

����������	������	���

���

JLMP.ee

SUPPRESSION DES TABULATEURS 01-01

1CXV00

.TITLE

.PROC

»LOC

SUPTAD
ZEO
S>53
100003

i Don loi WAK 25.2.80

; Celte routine remplace les tabulateurs par des espaces dons
iuno ligne de ccrmcndo corrwncont par (DE) et terminée per un
;caroclcrp terminatour quelconque.

0C0010 TAFCOL e

;ln DE pointeur a une chôme de caractères
«cul (DE)*... chaîne modifiée (longueur égalé ou plus grande)
inad

SUPTAD.
ÎOCVXK)
10x0:
1CO0O3
100003
10050»
IvôOCS

100505
10X0
100010
100012
100015
103016

iO'OÛC
10.^'1
10^72
10007.4
100025
100030
1C0021
100033
1CC036
IKX‘37
100040

10004?
1CO043
100C-1?
105047
10CCSO
100051
100052
15O0S3
1OP0EE
10X57
1G0060
100061
ICQCCi
icxr-4
10<FÜ
100066
100067
103070
100071
10007c
100374
1O507E
1050'6
10CO7?
lOOlOv
100102
10O103

100104
103105
ICOlCô
1031G7
100110

100111
100113
1 COI 14
100116

1001E5
103121
l©i 122
100123
leoizi

SUPT1,

31S 125 200
(MO 371
033
016 000

267
2ES 122
341
312 120 200
176
326 011
312 C42 200
043
014
033 356

171
206 010
346 370
221
265
305
075
312 104 200
315
325
353

2S5 122
104
115
321

203
137
076 OCO

301
361
107
201
117

€66 040
C43
OZO 373
020 300

311
221
SOI
361
311

SLPT4,

SUPTSr

SLP79.

1C0125
100127
100154
100131

376 015
310
267
311

1C01X
1001 il

10013C
1O0J40
100141
109 :
l&'l-*'.»
K .HCl

PUSH
RJSH
PUSH
PUSH
LOAD
LCAD

LOAD
INC
CALL

DEC
LOAD

PUSH
OR
susc
POP
Jk>P,EQ
LOAD
CC^P
Jl*F.EQ
INC
iNC
JUbP

LOAD
ADD
WD
SUD
PUSH
PUSH
DEC
JJbP.EQ
PUSH
PUSH

OR
SVEC
LOAD
LOAD
POP
PUSH
ADD
LOAD
LOAD
ADDC
LOAD
POP
PUSH
LD DR
PC?
PCP

PCP

LOAD
ADD
LOAD

A.(DE)

TESTE IN
SUPT1
DE
C.«0

SUPT9
A.(H.)
A. BTA3
SUPTJ

A.C ;
n.üTADCOL
A.C277- (TABCOL-i)
A,C
AF
BC
A
SUPT4

DE
H..DE
A .A
HL. DG
B.H
C.L

DE
A.E
E.A
A. CO
A.D
D.A
li.
DE

LOAD (HL).ESPACE
INC H.
DECJ.NE B«SU^Tb
JJ^P SUP72

POP H.
PCP DE
POP BC
PO? AF
RET

j —
; TESTEIN >
,CCSCSS32Z

A caractère quelconque
EQ si terminateur
fE autrement
F

TES7F1N.
COP
RET.EQ
CR
RET

A.BCR

A .A

cherche lo fin de lo chôme

init cceipteur do position

fin do lo ligne 7

tabulateur ?

non ■> cherche cor. suivant

calcul nb d'espaces o mettre

rempli zone vide par des espace

avacass tsaess t:cts:c5::r::s::«c::urt:r::::cssset::::i:s:i:33

TEST,
016 024 LCAU
347 120 .U

TESTO,
247 GJ5

316 000 200
ZJ3
jn CC3 317 043
C13 3

1CO132 .FHD

*,<> rc (* • cr roc
Source f.tv< V “ u-cful! Imas long
Dmcry fi In */O r .:fcut’S îor^
fraertly t,rj> L2C3 tCLG*r’s CGTD Imos/nm

C.WL1
?IDIS

TCETLhG
K.LC
SUATAD
K..DE
?DITEX.?RÜTURi
TCSTO

5.13-8

����������	������	���

���

H..DE
K..DE

ADJONCTION DE TABULATEURS

.TITLE

.PROC

loc

AJTRB
ZSÛ
SMS
1OOOOO

; Dama! ROUX 25.2.80
i 6
;Colle routine raeploc» les espaças par des tabulateurs dans
;unc ligna de commande commencent par (DE) et tammoe par un
;caraolere terminateur quelconque.
;La ligne ne c'a il pas contenir do tabuluieurs I! Au cas ou vous
;f»'otcs pas sur. appelez SUPTRB avant RJTR3 «
j CRU. SUPTAB
; CPU. AJTRB

0O0010 TABCOL ’

j AJTAB >
|S1C<CC3^

•in DE pointeur o une chaîne de caractères
.eut (DE)*... chaîne nodifieo (longueur égalé ou plus petite)
. mocl

AJTAB।
1C000C
103001
100002
XCCKX'3
10X04
1C0CC3
100005

lOCOta
locoti
1CO314
10*017
ICCCLe
100021
100023
icco?s
1OW6
10W0
100072
100033
iceoss
JCCOX

1OKM0

100043
10.XM4
10004?
200047
1CCO50
100053
1C0C54
100CC5
lOVâô
1CW60

10X52
1C00G3

100'00
10COV
lecorz
103-373
1OO07G
10c0z>
100100
iceiot
iwce
100103
100’04
20-3105
1C01PC
103207
103110
ICCUd
100113
100114
2O0K5
1001IG

345
142
15?
015 CO©

315 125 200
312 O40 200
043
014
376 040
040 363
171
346 007
040 3S6

CCS OU
043
OLO 3E0

001 000 COO

376 011
043 361

345

355 122
341
312 120 200
176
376 040
040 344

AJTA1.

RJTR2i

AJTA4,

AJTRS:

AJTA3i
10017.0
100121
100122
100/23
100124

XI
311

PUSH PF
PUSH BC
PUSH DE
PUSH K
LORD H.D
LORD L.E
LORD C.K0

LOAD A.(H_)
CRU. TESTEIN
JtM».EÛ AJTA2
INC H.
INC C

P.USPQCE.
JUfP.IE AJTA1
LORD A.C
PHD R.8TR2C0L-1
JUbP.Æ AJTA1
DEC H-
LOAD (H.) .PTAD
INC HL
JUP AJTA1

BC.HOLORD

.M-F ,EQ AJTA3
LORD A, (H.)
DEC K
INC BC
COrF R.UTA3
J-tP/E A JT A4

pjsh
CR
SUEC
POP
JlfrP.EQ
LOÛD
COP

DEC
INC
PUSH
FU SH
PUSH
NC
LOAD
LCAO
INC
LDIR
PCP
PCP
PGP
DEC
JU>F

HL
R,R
HL .DE

A JT A3
A.(rt-)
A, HSPAGE
AJTA4

DE
BC
K
AJTAS

DE
BC

; TESTFIN >

«in
;Cut
>
.rcd

A coraotere quelconque
EQ si terninateur
tC outrecenl
F

TESTEINi
1W125 37E 015
1001L7 310
103130 257
10O131 311

RET.EO
CR
RüT

A.BCR

A.A

nia iiaitioioacicasoacf ncnn • « ccacsas9E3v bide rsflïsacoi « «va eatrss

IC^I l
100122 01G C24 LOAD
ICO134 347 123 .U

TESTO
1C01X 347 CC5 .U
1001 IC X3 EX
F»141 315 CCO 200 CAO.
100144 X3 EX
10145 347 CCC 347 043 .U
ÎOI51 020 2G3

C.M4.I
7ID1S

TGETtHC
H..DE
AJTAD
K. .PE

1LST0

100132 .DO

C00037 rofcferccs
Source fila u'efulî linos long
Btrar'j file CXvlC3 tytos ’erg
faso^i’ly tira CûC8 f.cerfs CT/^ I inos^nin

5.13-9

����������	������	���

���

H..DE

2

8
9

10

12

15
16

18
19
20

EO

i; 3

12

116

113

126

123

130
131

140
141 eoi

fendif.
LORD
OR

TEST IF

0COX1

CWXVSi

00003

000043

0OXMS

O3X

001

160

015 164

001

070

074

ceo

000

ceo

CvO

001

oo:

0^0
001

Oc0

043

003

315 001 001

311

01-01

END1F

U

U

MW
LOAD

HM
^CCR^Intut

. cuvro lo fichier on
ncTOî ✓ ; cr.lréo.

LOCPt

FIN;

U

LOS
STRU1
nKH.A 5 scuve le no do canal

U

U

LOAD
.U

LORD
.U

LOAD
.U

LOAD

.U
LOAD
.U

.U
LORD

U
U
U

IM

LOAD

i PEND IF

i Calcul les
t diminue le

FIN

DG.COELF

A.b*.
7DICRR
LOCW

A.ItCH

R.OUTCH

niveau actuel
nouveau nivécu

PIF

PEJO1F

M3CR0
BHORI

lovai

LE’ÆL neuvesn nueau

sauve le no de canal

DO1F ?

t aug-^nto le love!

143
144
145
14G
147
143
14<J
150
151

15u

1E3
153
160
161

163
1C4
ICS
163
1G7
163
169

171
172
173

173

160
181

183
184
1E5
lEù
187
182

ISO
191
192
193
194

1S3

EOD
201

203
204

207

000374
000277
C00302
000305
C0031O
CCO313
000314
000317

000320
000323

0CO33O

CO 0240
000342
CC0343
CC0345

000231

003332

0O036S

C00374
C0CG76
OO04CO

20?

211

213
214
215
21G
217
216
219

231

2

240
241

243
244

246

243

ESC

274
275

316 C01

072

000
000
001
0\X)
001

001

LORD

LOAD
311

041
COG

065
020

073

PEND1.
001 LWD

LORD
PEND2»

A.LEVEL
A.A
romi

II.KR0
BHORI
A.LEVEL
A

H.JIDDVF
d.iw.f

diminue lo love!

net beoucaup de “>

043
CEO
311

041 001
020

040
043
020 373

001

310
C41

043

311

021

C43

C4 0

001

041

105 001

371

LORD
INC

B,PENDE

Calcul la structure verticale
In
out

mod

B VERT;

DVERlt

BVER2»

BHORI

DbXF

LORD
LORD

LORD
ne
DECJ.Æ
LORD

LOAD

LORD
INC
INC
DEC

DEC

pointeur après

B.HLElF

(Kl.USPACE

B. B VER1
A.LEVEL
A.A

A
DVER2

Calcul la structure horizontale
in H. pointeur où mette

DBüF
ccd

BHORI ।

BHORi:
LOAD

LORD
1KC
.U

NtéERO >

LEVE!.

EE.BXDtF

BHORI

structure avec des espaces

levai » zéro ?

oui c> ne génère aucune struotu

net ”! * dans le buffer de
structures autant de fois que

avec des *

“a du niveau sur le dernier "!*’
pointeur apres le dernier "I*
niveau courant

; out
i r^J

iU-EROr

A

000401
C004C2
000405
003407
000410
000111

CC0412
000413
000414
0OO116
C204EO

C004E4
C004 £5

003430
000131
000434

CCOî^o

C0C441

CCC142
000443

000444
000447
000454

00046*5

072

C43

176
C43
376
050

040

011

001
DEC
LORD
ADD
LORD
INC

A.U'O convortI on asoil

311

345

312
276
043
C23
CEO
067

105
106

106
114
11G

001

123
104

SXPSP

Saute

out

les espaces et les tabulateurs

LORD
ne

C0P
JUMP.EO
DEC

A.UTRB

Compare doux chaînes de caractères
in

out

CE pointeur à la chaîne de référence
H. pointeur â lu chaîne cherchée
CC si les deux chaînes sont égales.

PUSH
COfPlî

LORD
OR
JU!<P.EO

A .A
COIPO
A,(K)

ne
ne

C0MP1

C0X79:
POP

; Pseudos opérations décodées

1F.
106 CLSE
111 OlDIF.

.ASCII

.nsciz

.nsciz ÆNDlFz

; Variables.

ccoa.’o t ouï

ûOÜOJl

OCWOl

000020
COOTCO

• é

U

m •<!•
IIKN

aurai ।

HHlF II h!)

LHD

lui

niveau
t on.il un entrée

buffor contenant
liuffer contenant

5.13-10

����������	������	���

���

I BANNIERE

100320
100323
1CC224
100223
100331

312 324
CG7

SS5 113
311

200 JUMP.CQ

BFG.
174 201

F-OP
LOAD

bfo

DG
DC.LBUT

!•• ROTDG décalage otrculalre do DE
lin A amplitude du décalage IÆ registre décalé
joui LG
;mod F A DE

.Tl TUE BAN3S.SR
>800103
jFerre une banniOr•

l.dlr JDN.SFWKY et L1D

dans un bu ffor

I 100000

{Remplacer FVTD par Vappol APD< PUTDC et revoir la def dos vart

*PROC
.LOC

COB

1CO0D3

000014 LBAN ■ 12. ;Longueur max 1 igné

100003
1C0CC2
10CW4
10QCJ6
ICCCivi

taxes
100000
10(063
1OC0V6
1OXV
1003:0
1OC073
KW3
1OV7S
1003UO
100’04

103106
103107
10C110
10011?

016 024 TEST :
347 126
347 135
ICI 146 146 161

LCSD
.U
.U
.ASC12
.U

LOAD
CALL
PUSH

lcad
LCAD
COP
JLf^.EQ
.U
JUbP

c.cli
?!DIS
7TEXTIN
“Affiche un» bannière. Tapcx la linne<CR>"
TŒTL'Æ

isauve le Ccrry, indic fin

jTrop long

B»ns Banldre
idem tcrminoleur dans D

FL pointeur au texte termine par 0 (ou B)
A long rax bannière (B terminateur)
DG pointe buffer destination
H- pointeur â la fin du texte
buffer termine par 0
BC longueur buffer
CS bannière incomplète CC terminateur atteint
F A K H_

100341
100343
100344

100346
100317
100352
1CO353
100354
100357
100363

100366
100367

0

I

281

074

310
313
313
060
034
CDD

345

167
043
C42
052
013
C42
341
311

043

370

365

172 201

172 201
174 201

174 201

ROTDGi UC A
RÛ3t L€C 0

RET.EQ
SUC E
RLC D
JUWP.CC R02
INC £
JUP R02

i in
;oul
;nod

FVTD;

FVTD
A car

F A

PUSH
LOAD
LOAD
INC
LOAD
LOAD
INC
LOAD

Copte dans zone mémoire pour transf ull
PEUT pointeur

(FL) .A

Variables dons le programme
H- pointeur texte
DE motrice du points 3*S
C code lettre
B compteur de points par caractère CV
A corplcur de décalages et reg temporaire
FCLFF pointeur buffer
LEVFF longueur buffer
C'. compteur do caractères par ligne
CL csnpteur de 1 ignés par 1 igné de texte

BWC5 LOAD
BA?GSB -. PUSH

LCAD
LOAD
LOAD
LOAD
LCAD
CPLL

B.CD
DE

TEFM.A
PRFF.DE
A.CCR
FVTB

PUSH
LOAD
LOAD

LOAD
LCAD

PuSH

A?CS
CL .A

;gcn car de 64. caractères’

>5 lignes par ligne de texte

>3 points por cor
;poids fort de DE

100370
100272
1C0374
100376
1CMCO
100402
100404
100403
1CC410
103112
1CM14
100416
100420
100422
100424
103126
100430
10M32
100434
100436
103440
103142
100444
1C0446
ICM 50
10C4S2
10CMS4

1C04 56
100460
100462
100464
100466

103170
100472
1C0474
100476
1CC5C0
100302
1C0S04
1C0SC6
100510
1C0T12
100314
100516
100520
10CS22
100324
100526

103523
ICO522
1CCS34
10C536
100540
ICC542
100544
1C054G
100550
100552

176 357
174 362
124 37S
142 164
134 374
142 375
102 371
172 1G4
073 371
342 21?
136 214
242 372
O10 374
276 370

134 164
104 371
174 164
144 373
122 225
202 017
076 374
025 174
076 273
066 331
CCS 037
146 315

100
020
176
CM
040

274
021
004
027
2M

CCO COO
303 005
200 030
034 343
222 227
CS4 131
370 355
EDO CCD
100 1C4
131 004
231 163
210 043
CC0 036
010 041
COO 002
CM 101

176 374
040 237
144 31S
124 215
020 177
132 27S
122 ICS
106 311
124 125
131 225

100554 200 002
1C0E5C 200 C06
100560 242 C42
100562 224 122
100564 210 212
1C0Û66 104 OIS

100570
100571

100S72
100574

103576
1CC577
1CC5C0
1CCC01

C340C3

0O0
000

000 OCC

CCD
CVO
cco
(00

033 rofcrcncos

003002 .RDX

TAB25.

000010

2
! lcw*htnh matrice 3X5

.U 1110111101111110 ;«

.U 1111031001111100 .A

.U 1111110101010100 ;B

.U 0111010031100010 ;C

.U 1111110031011100 ;D

.W 1111110101100010 ;E

.H 111110O1O1O0CO1O .F

.U 0111010001111010 jG

.U 1111100100111110 .H

.U 10001111111CO01O .1

.U 1000110001011110 jJ

.U 11111O1O1O1C0O1O ,K

.U 111111COOO1C00OO .L

.U 111110OO1O11111O ;H

.U 1111101110111110 .N

.U 0111010001011103 ,0

.W 1111100101000103 ,P

.U O111O1OO3111110O ;0

.U 1111101101100103 .R

.U lOOiOlOlOlOlCOlO ;S

.u coeoiiiii1COC010 jT

.U 111111CGC011111O .U

.U O11111OCO0O11110 ;V

.U 1111101100111110 .U

.U 1101103100110110 ;X

.U COOlllllODOOOllO ;Y

.U 1100110101100110 ;2

.U 111111COOICCOC00 .C

.U 000100010CÙ10000

.U O0OCO1CCO111111O |3

.U OCOlOlllllOCOlCO

.W 100001COOO10OOOO

.U OOCOOCOOOCaX’OCDD ;SI

.U OU3001O111O*?0< ^ |!

.U 0001100011000000 ;•

.U llKVOl 100011100 .il

.U 1001011111010010 ,S

.U 01011C01CD110100 .y.

.U lllOllOllllllvOD ;S

.U 000700001ICCcoco ,r

.U Oll’OlODOlOCCCCO .(

.u ocecoicoDioiiroo ;)

.U 0111001110011100 ;*

.U 0010001110001 <VDO ;♦

.u cocooiieccococoo -,.

.U COIODOOIOCOOICOD

.u oococoioocococeo :.

.U O1COOOO1O00CO18O ;/

.U 1Î1J11C0O111111O ,0

.U 1001011111100033 ,1

.U 11CD11O1O11C010O ,2

.W lOOOllOlOlOlOiCO .3

.W 01111111000114'00 ,4

.U 1011110101011Ü10 >5

.U 0111010101010010 ,6

.U 1100100101003110 ,7

.U 010:010101010103 .8

.U 1001010101011100 ,9

.U CCCC0O1O1COCC0O0

.U 000001lOlOCDCCCO

.U 001CCD10101C0010 ,<

.U 0101001010010100 ;=

.W 1CO0101O10D01CCO ;>

.W 0000110101000100 |7

.RDX 8.

CANAL. .B 0
LPT. .B 0

PBUFFi .U 0
LBUFFi .U O

ICC; .B 0
CC: .U 0
CL: .B 0
TTXM; .B O

.LCC 54000
DUFFER.

100000 .CAD TEST

Source fila (COIFO usofull linos tony
Dinarq file CC?6 2 bijti s long
AstcrlilU l»fv 015 soccntla 0‘'J ino.j/min

.Canal fichier
iCanal irprimante

;Pointeur dons le buffer
{Longueur du buffer

;lcng mox des lignes
.compteur de caractères par ligne
.coupleur do lignes par ligne de texte

«buffor Lanière et texte

5.13-11

����������	������	���

���

PRFF.DE

PISTON

TITLE PISTON
2
3
4
S
G
7
S
9

10
11
12
13
14
15

04XX
XVIX
0X022
XXC4

040X0
000010

BASE • 4 XX
UIDTH • IX

ÆICXT « 24
» 1Î4X»377

YNW « 100X4X^3X
Tlf€R « 10

18
19 OCXX
20 W0X1
21 MWM

23 0X007
24 00X11
CS 00X12
26 0X013
37 00X14
ES 000016
E9 00X21
30
31
32 00X24

34 000026

36 00X30

041
XI

371
323 ex
045 OX

OX IX
CX 373

040

STfiRT»

QJCM.

XOR
LOAD
LOAD

LOAD
INC
INC
OP
OP.bE
LORD

R R
H? HERSE
BC .H-U1DTHXÆIQTT

(PL).ESPACE
H.
BC
A.B
OJ€M
H-.W1M^T
LOOP

43 000036
44 00X41
4S 0X043
46 0X044
47

ox ex

ox ex

ex ex

076 010
127

SI

91

000056
000271

0X075
CX100
000101
OCO102
copies
000106

C001C7
000112

0X115

000120
000121
0O0122
0X124
000125
0X126
000131
0X132
0X133

103

37 XO137
33 0X140
23 0X141

IX
ÎOI 0X144
£02
133 0X146
101 0X1E3
105 X0151
108 0X132
107 0X153
IX 0X195
ICO 0X1S7
no oxiœ
111 0X161
1 4
113
114
115 0X163
116 0X165
117 0X171
112 CX172
113 0X173

121 000176

123 CX2X
121 0X201
125 XCC03
126 &X2X
127 CX207
123 0X210
123 0X211
IX CX214
131 0X215
132 CX216
133 0X217

042 024 CX

314 107 OX
052 024 ex
043
043

IX
XI
ex

ix

167
315 265 XO

CURRENT;
.u e

.U 0
bEU

.U 0

CrtXE.
LOAD A.HTIÆR
LORD D.A

UAlTi
IEC A
LOAD H..KCBJLST
JUbP.ZC LAIT
DEC D
JUbP.ZC UR1T

LOOPi
LOAD A, (H.)
OR A.R
JUbP.ZS CYCLE
LOAD E.A
INC H.
LOAD D.(H_)
INC H.
PUSH H.
EX DE. H.
CALL MOVE
POP H.
OP LOOP

end of tisl of objecta

134

IX 0X221
137 0X224
IX X0227
139
140 000232
141
142 0X235
143 0X236
144 000241
145 00C242
146 0C0243
147 0X244
148 0X245
149
150 0XZE0
151
152 0X352
153 000253
151 CX2S4
155 0X255
156 0X256
157 0X267
158 CX3W
159 000261
IX 0X262
161 0X263
162
îf?

165
166
167
163 000265
169 X037O
170 XD271
171 0X272
172 000273
173 0X274
174 CX275
175 0X276
176 0X277
177 X03X
173 CO03O1
179
IX
181 0X302
183 0X305
189 0X3C6
184 0X310
165 0X311
186 0X314
187 CX315
188
189 000316
190 000317
191 0CC3CO
192 0X321
193 030322
194

215 202
CS2 026
303 235

052 OX

162
C53
163
315 2ES

ox

02G OX

012
167
X3
012

310
137
031
X3
030

C53
126
053
133
es3
IX

052 024
043
006 111

312 316
043
043

IX

1 subroultn» roue

195
346 XI 356 XI FIXLSTt .U

OX
OX
OX

ceo

ex

ox

OX

ENDLK-.

UPDATE.

DRAU.

i currenl « pointer of abject

MOVEt
LOAD CORSENT.H.
DEC (H.)
CALL.ZS MOVEX
LOAD PL.CURRENT
ne K
INC H.
DEC (H.)
CALL.ZS MOVEY
RET

j count
; overflow, lino to revo objecl

; point to y
; sosa for y

MOVEX
LOAD
JIM»

BC.HWÆ
COrtl

MOVEYt

COM.
LOAD BC.UYMVE

IEG;

PJDOUT*

DCAUD t

L(/X.

INC H.
LOAD D. (K.)
LOAD E.a-i
XÛR A/»
SUB A.D
JIM».PL i€G
LOAD C.B
LOAD A.D
LOAD E.R0

LOAD B.E
RJ SH BC

LOAD CHL).A

LOAD D.BO’

LOAD (H.) .ttSPACE
ne BC
LOAD A.(BC)
OR A.A
JJf’.ZS ENIRUD
LOAD E.A
ADD IL.DE
INC te
JJ F PUDO/T

au.
LOAD
PCP
ADD
LOAD

L^D

ODXCT
(LD.H.
te
IL.DE
ecu.H.

D.tO

J twi

i negstiv?
; use posiltv nove

) romorber for loter

; resel courtier

> clcor seraen

1 move incrément
i end of table 7

; put in low bute
« next point of objecl

t//D
WP
JM».HE
ne

LGAD
OR
JW.7Z
L^D
ADD
ne
JJP

A.OO
MWCE
0D7TCL
DC
n.(DC)
A.A
DdiJ
E.A
iL.DC
ce
LOOK

t look oui for obetooles

> gel ne«l incrément

G'LL
LOAD
JJtP

LOAD

EX
LOAD
DEC
LOAD
DEC
LORD
CRLL

LOAD

LXD
LOAD
INC
LWD
OR

LOAD
RDD
If 40
JUMP

(HL).E
OBJECT

D.X

A.(BC)
(X).A
BC
A.CBC)
A.A

LAAU

i subrouline abject
i puis current abject's positon in hl
; and description pointer tn bc

OBJECT:
LORD
DEC
LOAD
DEC
LOAD
DEC
LOAD
DEC
LORD

LOAD
INC
LXD
COXP
JUtP.EO
INC
INC

X>
LOAD
>XW
SUB
LOAD
RET

B.(H.)
A.A
A.B
CH.) .A

BAS«4 VERTC»4 VERTD»4 HAUT*4 O

193 CX33S
199 0X351
2X 0X363
XL 0X375
202
203 000411
204
205

207 0X422
EX 000432
209 C0O442
210 CX4£2
211 0X462
212 000472
213 0X502
214 0X512
215 0X522
21G 000532
217 XO512
218 0X552
219 0XE62
220 X0Ô72
221 0X502
222 0X612
223 XZÔ22
224 0X632

229 0X662
230 0X66-1
231 0X266
232 CX670
233 0X672
234 0X674
235 000676
236 0X7X
237 000702
233 0X704
233 0X706
240 0X710
241 CX712
242 0X714
243 0X716
244 CXTëO
245 CX722
246 0X724
247 0X726
248 0X730
249
250
251
252 0X 732
253 000-M?
RX XO AC

X07u?

258 WJ/Z!
£59 WK’12
rco xio t:
toi WW’U

cou .•
foj oHi».'
ÎT.4 001 rv
JG’» WllUÎ

; XI17?
; en cxnro »
. h)
. 0 XI? m

015 XI C2Ô XL CDJLSTt
076 XL IX XI
L46 XI 156 XI
216 XL 222 XL

014 002 305 IX HAHA.

040101 BQ4

262 XL 102 IX BALLlt
264 XI 103
2£6 XL 1C4
270 XL 105
272 COL IX
274 XL 107
276 XI 110
3X XL 111
302 XL 112
304 XL 111
303 COI 112
310 XI 113
312 XL 114
314 XL 115
316 COI 116
320 XI 117
522 XI 120
324 001 123
3Z6 XI 124
330 XI 125

IX BALL2;
IX BALL3:
IX BALL4-.
ICO BACLS?
IX BALL6.
IX BALL7.
IX BALL8:
IX BRLL9.
IX BALL10:
IX BALLll:
IX BALL12*
IX BALL13:
IX EALL14
IX DALL15:
ICO BALL16:
IX BALL17»
IX BALL18
IX BALL19-
IX SALL20;

.U HAHA*4 BALL1+4 BALL2*4 BALL3*4 BALL4M BRLL5«4

.U BALL6»4 BRLL7+4 BA_L8*4 BALL9»4 BALLICM

.U BALL11«4 PALL12»4 EPLL13*4 BALL14M BALL15*4

.U BALL1644 BALU744 BALU8«4 BRLL19+4 BRLL20^4 0

.LLBBB HORDES «CTE BASE»31U1DTH»S 15 2 7

e BASE*UIDTHH

.UUBBBD X BGNH
.UUBBB9 CB BGN*2
.UUBBB3 X BGN»3
.UUBBBB OD FGN*4
.UUBBBB CE BGN«5
.UUBBBB CF BGN»6
.UUBBBB X BGN*7
.LUBBBB CH BGN»3.
.UUBBBB 01 BGN»9.
.UUBBBB X PQMHO
.UUBBBB CK BSN* 11
.UUBBBB CL BGN«12
.UUBBBB Ot FGN«13
.UUSBBB ON BGNH4
.UUBBBB X tQO 15
.U.TDBB OP BGN»lê
.UUBBBB X SQM7
.UUBBBB OR BCWH8.
.UUPDBB OS BON»19.
.UUBBBB OT BON*20.

-2

-2
-2
6

101 ex
102 OX
103 CCO
ICI CX
1C5 CX
IX OX
107 OX
ne ox
in ox
112 OX
113 OX
114 OX
115 XO
11G XO
117 XO
120 ceo
121 CCD
leZ XO
123 OX
124 000

.B

.B

.B

.D

.B

.B

.B

.B

.D

.B

.B

.B

.B

.B

.B

.D

.B

.n
.D
.D

'A 0
*B 0
'C 0
»D 0
*£ 0
♦F 0
'G o
'H 0
’î 0
'J 0
’K 0
'L 0
’M 0
'N 0
'0 0
'P 0
‘Q 0
’R 0
’S 0
•T 0

.LUDOX HORDES

.ULTDDD HORDES

.UJUrDD VLRDC<

.ULDPDD 11 Kit y

XI 077 HAUT:
372 001 277 IX CAS
172 XZ 077 IX WRTGi
172 xz 177 IX VLRTD.

(T.5 XI orr» XI IKFDCSi .1»
cca roi ers <vi ,n
CSU XI VK XI .1)
O'.’i XI W.» XI .Il
e’.*» coi wi ,b
OVJ XI OS'i 001 .1)
<y.’i xi (*»•; wi .n
<JL5 XI ttS XI .1»

111 IX lit IX IVUDESt .D
111 IX 111 KXI .p
111 ICO ni KM ,p
ut wo in ix .n

XOOOv)

msc-l 1 17? 0 1
t t?? o i

rn : «UlDTH-t t 1 7 0 1
DAsr.»ctutDi)(*i i -rv» o i?”

.IND SThRT
5.13-12

����������	������	���

���

JIM%25C2%25BB.PL
IL.DE
IL.DE

LIFE (= JEU DE LA VIE)

!

.TJTlE LirnuCCN.SR

PROC ZSD
$>£

1KXX»

01

l Etantel Roux
i idce

30.01.78
01.10.20 (presque 3 ans plus lard!)

i
; La jeu de llfe permet une simulation d'une forme
. de vie très simple rappelant l'évolution des
. bactéries.

» Le programme comprend deux parties distinctes :

» 1) Un preoronoe permettant de dessiner sur
01-01

9 ea^lO.'Ol 161453 LinKCCN.SR 01-01

0

.TITLE LîFAUCON.SR

I
. Régies du jeu de life
i------- ----------- ------- ---------- ■

« Cos régies vont décider do Voxtmclion au do la
i création d'un® bactérie on fond ion do son
• no^ro do voisinas* Uno bactérie peut avoir 8
; voisines au roxiroæ.

■ 12 3

; 4 * S

I 6 7 8

•si un erp lacèrent sur l'écran â doux
bactéries voisines, il no sora pas
modifié.

-si un orplocomont sur l'écran à trois
bactéries voisines» il s'y crée une
nouvelle bactérie»

-pour tout autre nerdbro de voisines. 1'
emplacement se vide, (la bactérie meurt)

Les touches *R* 'V* et *C* per rot Lent
de se déplacer dons toutes les directions,
si on appuie siroltanément sur l'une do
ces Quatre touches et sur "CTRL*» on crée de
nouvelles cellules.

place lo pointeur au milieu de I'écran
• " tue la cellule situe® scus lo pointeur
"S* calcule une coule génération
•A" calcule ô vitesse maximale

le pointeur ou milieu» e
•|C effooe l'écran.

Pour charger un irolif depuis une bonde pop for «
tirer simplement la bonde â travers le microlrru.

, Calcul do la génération sutvaute

9
. On dispose eu départ do Z fois tLlPCFR positions
, r^^iro (go qui correspond â 2 écrans alpha-
4 rwdr f quos rerp Jota).
. Loi premières commencent â "VID4" ot correspondent
, à) 'Czron.
, Los ti.lt>CP suivantes cc-rencenl â "VOlCDf ot no «ont pas
, visibles.
e

. "VIO-*" peut contenir soit dos espaces positifs
, eu négatifs <40 eu Z40J, soit dos “a" positifs
; eu négatifs (117 ou 317).
, “Vü!5ÏtF contient dos voleurs qui no peuvent
» p93 etre vr.es.
. Ceo vatcurr ccrrospondont ou r^rtro do voisines
. de Chctfjos Cul Jules dans "VIEW*.
, Ci lo bit 2*? est 4 1. cela veut dire qu’4 col
4 erplacertenl, il n'y a pus de bactérie sur "VI CM".

. Si l'en décide do créer une cellule, il fout

. dpnc merérentor dans "VOISItr las 0 lûtes
» situes auteur do cette cellule.
;

122
123
124
1ZS
iza
1Z7
IcO
129
130
131
132
133
134
12S
138
137
133
139
140
141
142
143
144
145
14G
147
140
149
150
151
152
153
154
155
15G
157
1F9
159
ICO
1G1
1G2
163
164
165
1G6
167
163
169
170
171
172
173
174
175
176

173
179
1E0
101
1K3
183
164
165
166
187
1E8
189
ISO
191
192
193
194 100000
195 100003
196 100006
197 100311
198
199 103013
200 100015
201 100016
202 100017
203 100023
204 1C0021
2C5 100.^22
206 1C0O23
207
203
203
210
211
212
213
214 100026
215 1C0O30
216
2!7

219

232 100033

224 100041

231 100343
232 10CC45
233 1C0O50
234 100052

239 100054
240 100096
241 100061
242 1O00G3
243 100065
244 100057
245 100071
246 103074
247 ICCOTA
248 100101
243 100104
250 lOdlCG
251 100111
252 100114
153 1001IG
2F1 100121
255 10)124
Z% 10012G

258 100131
253 100133
2C0 1001X
261 100140

100143
i‘G3 10014G

leoiüo
7C5 1W153
rui looicG
ÎG7 100ICO
; en looio i
Zt3 ICOICG
;vo 1OOI7O
271 10017J

I<M17O
273 lOOZOO

Alger ilhme général-

On cuposo au départ que "VOISIN" contient déjà
le nortre de cellules situées autour de choque
erplocewnl dans '‘VICU".
Il suffit alors lo lire tous les bytes de
"VOISIN", et. on fonction de ce nerbre. de
créer ou do tuer lo cellule corrocpondonle
dons “VIEW.
Si. par oxonple. on devait luor un» cellule, il
faudrait décrémenter les 8. bylos situes autour
de la dite cellule. Mais cela no peul pos être
fait, car. lorsque l'on arriverait on dessous
do celle cellule, lo situation Dorait faussée,
on vo donc melire sur lo stock une informai ion
disant qu'après avoir finit de balayer “VOISIN*,
il faut décrCnwnlcr tout ce qui se trouve autour,
on vo donc faire।

ATM CC
PUSH FF

"C£* contient l'adresse do la position.
”A“ est négatif s'il fout décrémenter ol
est positif dons le cos contraire.
“F* a \e carry â xoro.

O/ont le mettre sur le stock toutes ces
valeurs, on vo pusher “AP' avec un corry
à un. ce qui permettra de voir quelle est
lo promtere valeur qui a été mise sur le
stock.

; Constantes »

0024C0 DIM

O400OO VI EU
043100 VOISIN

041 100 106
021 000 100
COI 377 004
076 040

C66 200
C43

eS
013
005
C04
362 013 ZOO

076 ICO
062 100 113

C41 137 102
042 152 201
066 240

347 044
322 054
347 015
070 367

04O
312 242 20O
373 132
CEO 346
376 113
05O 307
021 300 377
37ô 032
312 271 200
021
37G 004
312 271 ZOO
021 001 000
37S C06
31Z 271 ZOO
021 100 000
376 003
312 271 200

376 101
312 334 ZOO
37G 123
312 3.’i ZOO
021 377 377
37G 104
312 z<r» rco
021 001 000
376 106
312 ztr» zoo
021 100 CKX)
326 10 1
312 zer» .NX)
OC?I 300 37/
37G 12 !
312 205 100

jadrosso dons "VOISIN"
,C=0
i • « «
>CCO

• N-1WCAR

x SALPHA
» SGRA^NCAR

LIFE.

; dimension d'un écran

i écran visible
; écran invisible
; un» ligne (NCRR byto) de part
i ol d'outre de "VOISIN"
. peuvent être modifiées !

i Rempli "VIEW (2400 bytes) par dos espaces
» (43) et "l'OISiN'* (2400 bytes) par des inv (200).

LIF1:

LOGO
LOAD
LOAD
LOAD

LCAD
INC
LOAD
NC
rec
DEC
INC

K.JIVOISIN
DE.aVIEW
BC.BDlM-1
A.tiSPACE

(H.) .0200

(DE),A

BC
B
B
LIFl end ?

■. Los nlifncor positions situées û partir d»
; "VOISIN" doivent ce terminer par un 1O0. ce qui
; permettra, lors du calcul d» la génération, do
; voir qu'on est arrivé â la fin du balayage
i de "VOISIN".

LOAD A.«ICO
LOAD VÛlSltnDIH.A

Place lo pointeur de dessin au milieu do
, l'écran.

LlFllt
LOAD
LOAD
LOAD

H..OV1EU»1137
POINT,K
(H.) .USPACE'2Ü0

; Attente d'un caractère soit du clavier, soit
t de l'usarl 0 .

.U 71FRPR
JUtP.CC LIF4
.U 7IFCAR
JUNP.CS L1P2

i Test ot débranchèrent salon la louche pressée.

L1F4,
COMP A. ESPACE
JLbP.EQ RUBCUT
COMP A.B'Z
JllP.EQ LIEU
CCMP A.H’K
JUMP.EO LIFE
LOAD DE.n-103
CCM5 A.U’R-100
JLMP.EQ CELL
LOAD DE,11-1
COmP A.il’D-100
JUNP.EQ CELL
LOAD DE.tn
COKP A.tl T-ICO
JUMP.CO CELL
LOAD DG. (I ICO
ccrr n.n*c-iO0
jur.EO cn.L

cap
JiM’.EO
COM'
JUPXO
I OAD
a»<p
JUM’.EO
LOAD
OéP
AWMQ

l Oïl»
CW
K» «o’.Fl)
I (AD
CW
JW.IG

A.lTA
GO
A. 11*5
SfEP
HJ. M • 1
n.irn
fKM
ne.»»!
n.ir»
km:
DG.«ICO
A.tt'C
km:
h .h tco
A.ll’ll
km:

A

4

0

II

5.13-13

����������	������	���

���

I

D

100203

icccos
100210
iccei?

1CC313
100214
10021G
1O4C21
100223

icezzû
1CO230
100323

100342
100245

100246
1C02S0
1O02S3

100260
100261
100ÎG3
100266

0S2 152 201
176

100276
1C0300
10O3C3

100310
100311
100313

100316
100317

1CO321
100324
100327
100331

100324

1OO342
100343

103346
100347

100350

j Si oucune de cos louches n'est pressée. on
i en attend une autre.

JLHP Lire

053 152 201
313 276
031

174
376 1«3
332 235 203
376 105
322 225 200

313 '♦Aï
042 152 201
030 206

1OJ23S
100336
100240

122

052 152 201
176

312

021
031
313
315

312

031
313
315

240
043 ZOO
240
100 006

375
140 SOI
043 200

316 200
317
ICO 006

126 201

264

315 346 200
052 152 201
313 376
363 043 ZOO

315 346 ZOO
347 015
070 371
303 054 ZCO

001 O40 203

100

002

106
ICO
201

333
400

404

400
410

100XG
100371

100374

100775
1C0376

411
41?
413
414
415

201

: Déplocement du pointeur de dessin*

HOVEt
LOAD H.. POINT
CLP (KJ-7
ADD HL.tC i déplacement

i Est-ce que l’on sert de l'écran 7

IFW.£
LORD A .H
CCH» A.BVlEU/400
AMP.LD NQHOVE
CObP A.«(VICJ»DIH)Z43O
JIM9.HS NOMDVE

IFMÛVlt
SET (H_).7
LORD POINT,H.
JUK3 LIEZ

i Si l'on est sertit de l'écran. Il faut revenir
; en arriére.

NOtOVE-
A.A clrc

1FWV1

i Effacement
; toutes les

RUBOUTi
LORD
LOAD

d’une cellule, il faut décrémenter
positions voisines dans “VOISIN".

H_ .PO INT
A,(H.)

i s'il n'y a déjà plus de cellule â cet endroit*
; il ne fout rien foire.

a>P A.USPAŒ’ZOO
AK’.EQ LIEZ
LORD <H-).11SPACE!Z03
LORD DE.HV0IS1H-V1EU
ADD H..DE
SET (H.). 7
CALL KAD
JW LIEZ

j crée une nouvelle cellule, il faut incrémenter
; toutes les positions voisines dans "VOISIN".

FUSH
LORD
LORD

DE
H. .POINT
A.(HL)

; s'il y a déjà une cellule ù cet endroit,
i il n» faut rien faire.

COP
JlbP.EQ
LORD
LORD
RTD

A.tt'O’ZOO

(FD.M’O'ZCe
DE.KVOISIH-V’EU

ALI VE

MOÆ

t calcul d'ur.e seule génération, replace le
; pointeur de dessin ou meme endroit.

CALL
LORD

JlbP

GEN
K. FC INT
CH.):7
LIEZ

calcul à vitesse maximum des générations
de llfe

GOt
CALL GEN
.U 71FCAR
JLTP.CS GO
JUHP LJE4

; Calcul d» lcr génération suivoûte
; rn^xxrrr^xtrtrrrtrtsrtrrtxtxtxt

; Push sur le stock "PF" avec le corry à un.

RUSH

LORD
LORD
LOAD

B.03'200
C.HSPACE
BC.M(3•ZOO)T400♦SPACE

t "DE* painte dons "VOISIN*.
. “HL" pointe dons "VIEW".

lord de.«voisin
lord k.kvieu
JUHP GEMI

Éat*ce qu'on est arrive à la fin de "VOISIN" 7
• l!b 100 a été place â Jo fin des 20.«G4. byles
; de "VOISIN*. Si on lit une valeur plus grande
\ que 30 et positive (plus polit que 200), c'esl
; qu'on a finl.

GDCr
COtP
JUHP.PL
LORD
cr
LORD

A.«30
G7G
A,(DE)
R. «ECO
(DE).A

C <— O

, Hat sur le stock du travail pour plus lord.
; "A" est plus petit que roro. il faudra dono
; (plus tord) décrémenter les 0 byles situes
' autour de l'adresse» donne dans "DE".

PUSH LF.
ATM FF

i Tue une cellule dans "VH1J*

Gau.
LORD OD.C , LOAD (ILMISPACE

421
422
423
424
425
420 108100
427 100-101
426
429
430 1051C2
431 108103
432 1CO4O4
433 1CO407
431 1C0MO
435 100412
436 100414

433
439
440
441
442
443 100415
444 1C041G
445
446
447
448 1C0417
44‘J 100421
450
451

453
45*1
4SS 1CO123
456 1C04Z4
4S7 100428
458
459
460
461 100427
4C2 100431
463
464
403
466
467
463
469 100433
470 100436
471 100441
472
473
474 10O444
475
476 100447
477 100450
478 100451
479 100152
480 100455
481 100460
482
483
484
435
486
487
489
489
4X
491
492
493 100462
494 100463
4S5 100164
496 100465
457 1C04C6
493 ICO167
499 100470
500 100471
501 1C0472
502 1C3473
563 103474
E04 1C0475
SOS 100476
506 ICC.77
£0? 1COS00
503 1C0SO1
509 103502
510 1C05O3
511
512
513
514
515 1C05C4
516 1C0EC5
Si? ICCSCe
518 1CC5O7
519 1CC510
E20 100511
521 100512
S22 1C0J13
523 100514
524 10051S
525 100816
S26 10CS17
S27 100520
529 100521
529 100522
533 100523
5J1 1C0524
532 100325
£33

537

540
541
54£
543
5*14
545
C46 100526
547 100S31
£40 100834
5<19 10CS37
050

ES3
554
555
CSG 100540
L5? J0C543
rs» ioœ«
CE9 100551
GEO
bGl
562
DE)
5C1
LC5
rxa
ÎG/
ten

b A3 l(V5»kî

033
043

cG7
362 023 201
270
040 3C5
346 177
022

066 117
030 355

037
075
040 335

066 117
030 343

COI 276 377
C21 176 000
303 042 201

315 104 201

361

341
372 C44 201
315 062 201
030 3£S

884
043
043
064
011
064
043
CG4
043
CG4
031
081
043
C64
043
C64
311

•
CS3
C65
C43

011
C65
C43

043

031

043

043
cas
311

001 Z76 377
021 176 000
315 0C2 201
311

O01 276 377
021 176 OOO
315 10-1 201

i

ox\w

tooooo

I Pointe la voleur suivante dans *V|QT* et
; dons “VOISIir'.

GDC.
h*: C€
UC H-

GOU.
LCftD A.(DE)
CR A,A
JUîP.FL CDU
a«P A.D j U>p A,D3‘200
JUPJC COM
END A.11200-1 / C 0
LORD (DG).A

; Mal sur le stock du Ira va il po*^r plus tord.
i "A" est plus Qrond que sera. Il faudra donc
* (plus lord) incrérenler les 0 butes situes
* autour de l'adresse donna dans ^DC".

RJSH LG
PUSH FF

i O'ée une cellule dans "VH3T

LORD
JUHP CDG

i Est-ce que "a" est égal â 2 ou ô 3 7

GD«>
fvîC A
DEC A
JUMPJG ŒN2

; Crée une cellule dans “VIEIT

LOAD (H.), «'0
GEb6

l Effectue le travail stocke sur le stock.

GEN3:

GEN7-

GENS;

AL1VE1:

DEADlt

LOAD
LORD

EC.U-(HCCR*2)
rc.H(2PO«)-2
GE7G

LCAD1

GEH7
PC1VE1
GEN3

12 3

4 (hl) S
»

6 7 8

DEC
in:
UC
INC
INC
ADD
INC
INC
ne
INC
ne
ADD
ne
INC
INC
INC
ne

DEC
CGC
INC
INC
DEC
RDD
DEC

DEC
INC
DEC
ADD
DEC
INC

INC
DEC
RÎT

ATTENT I ON

Les rouîmes “ALUE" cl
une ligne (NCAR Lylos)
byles de "VOISINÉ

« déplacement en 4

i déplacement en 5

• déplacement en 1

i déplacement en 2

i déplacement en 3

; déplacement en 6

; déplacement en 7

. déplacement en 8

, déplacement en 4

; déplacèrent en S

, déplacement en 1

; déplacement en 2

i déplaceront m 3

, déplacement on 6

i déplacement en 7

; déplacement en 8

"PERD’' peuvent délrulro
avant eu après les M.IJNCRR

i Incréments tous 1er bytes situes autour A» Pute
i dont la cccrdennéo (dans les N-ltvCr^ ec«ilicn«
i de "VOISIN”) est donnée dans K.

KIVE,
LWD
LWD
CRLl
RÎT

DC.U-itCRR»?)
DE.m<24NCAR)-2
ALHE1

; IKcrémcnte tous les bytes situes autour dj bute
t dont la coordonnée (dans les K-tViOK eosilio.-v
* de “VOISIN”) est donnée dans fl..

FCAD.
LWD
HMD
CV4L
AET

rc.a-<NCRR*c)
IV U«2VkT4é»-2
VLiÀDl

i Variable» en RRN •

IKMNT
.WKU l

.CND l IFG 5.13-14

����������	������	���

���

H..DE
JUHP.PL

