
es uiais^s-32XDSd3

L86L' W

����������	������	���

���Mis � disposition par Jean-Daniel Nicoud
Mars 2024

7 FORTH

1 MODE D'EMPLOI SIMPLIFIE

Pour démarrer le FORTH, il faut donner successivement les ordres suivants :

1) FORTH Le FORTH ne connaît pas encore les procédures
standards. Pour qu’il puisse les mettre dans
son dictionnaire, il faut taper ensuite :

2) SHOW-DEFINE FORTH Ce qui insère dans le buffer d’édition
le fichier FORTH.FH

3) PROGRA-C

4) END

Démarre la compilation

Retourne dans l’éditeur.

5) CURSGR—KILL—0 Vide le contenu du buffer d’édition.

Le FORTH est maintenant prêt pour une utilisation normale

Prenons par exemple une procédure qui additionne deux nombres et qui affiche le
résultat sur l’écran:

: ADD + .

Pour la compiler, il faut taper ; PROGRA-C

Si la compilation est correcte, nous nous trouvons automatiquement dans
l’interpréteur FORTH. Dans le cas contraire, nous restons dans l’éditeur et la
ou les erreurs- sont signalées par une flèche suivie du message d’erreur.

Depuis l’interpréteur FORTH, nous pouvons essayer la procédure ADD en
tapant: 2 3 ADD
L’écran montre alors 5.

Pour retourner dans l’éditeur, il faut appuyer sur END.
Depuis l’éditeur, il est possible d’aller dans l’interpréteur FORTH et tapant:
PROGRA-F

L’interpréteur FORTH permet de taper des lignes qui sont interprétées sitôt que
le CR a ôté donné.

Résumé :

PROGRA-C (sans erreurs)
PROGRA-F I--------------- 1

! Interpréteur !
I FORTH I

---------------- 1 ।

END I---------------- !

����������	������	���

���

2. LA PILE ARITHMETIQUE

L'arithmétique du FORTH est basée sur l'emploi d'une pile polonaise;
c'est là l'une des principales caractéristiques du FORTH.

La pile arithmétique (ou polonaise) est une zone de mémoire dont on se sert
en FORTH pour stocker les arguments des diverses fonctions utilisées; lors­
qu'une fonction a été exécutée, elle supprime les arguments de la pile et
met en place le résultat. L'utilisation d'une pile se fait selon deux princi-r
pes.

Lorsque l'on dépose un nouvel élément sur la pile, il vient se placer au-
dessus de tous les autres.

2. De même, on ne peut retirer que l'élément se trouvant au sommet de la pile

(On agit comme si on se trouvait en présence d'une pile'd'assiettes qui a
tendance à s'écrouler si on enlève une assiette se trouvant au milieu).

On remarque que le premier élément à entrer dans la pile sera le dernier à en
sortir.

En FORTH, les éléments de la pile sont des mots mémoire (16 bits) pouvant
représenter un nombre entier (de -32768 à +32767) ou un caractère selon le
code ASCII. On peut aussi considérer des éléments formés de deux mots (32 bits)
servant à la représentation des nombres réels (de -1039 à +10^9).

Toutes les fonctions du FORTH utilisent comme arguments les éléments se trou­
vant au sommet de la pile. Prenons par exemple la fonction addition et voyons
comment il faut procéder pour faire la somme de deux nombres

1) Déposer les 2 nombres
au sommet de la pile

2) Exécuter la pro­
cédure d'addition

M

■■3) Imprimer le résultat

2

����������	������	���

���

Ce qui donne la séquence FORTH suivante: (56 349 + I,~7Ï

Lorsqu'on imprime un élément (ordre *P), on l'enlève de la pile !

Pour pouvoir essayer cette séquence et toutes les suivantes, il faut se
mettre en mode interpréteur (CPRQGRACFf^).
Les ordres ou les nombres doivent être séparés par des espaces ou des
tabulateurs.

AUTRE EXEMPLE:

Soit à calculer: (6*(4-23))/8

Mettre 6
sur la pi 1 e

Mettre 4
sur la pile

Mettre 23
sur la pile

soustraction multiplication

6 ^(4-23)

Mettre 8
sur la pile

Division
(/)

En FORTH: 6 4 23 - * 8

L'opération mettre ... sur la pile est sous-entendue à chaque fois qu'on
donne un nombre. Elle est dond effectuée automatiquement pour tout nombre
donné. Par contre, le résultat final n'est pas imprimé et reste sur la pile
jusqu'à ce qu'on appelle la fonction . qui l'enlève de la pile et l'imprime
sur le terminal.

ENCORE UN EXEMPLE: Calculons 8+5+(2*5)-(7+6)

En FORTH: |85+25*+76 + ~^~|

EXERCICE!: Ecrire les séquences FORTH permettant de calculer:

1) 3*(9+2)
2) 5/(4-3-5)
3) 6-((5-3)/4*(2-ll))+7)

ATTENTION: En FORTH toutes les fonctions et tous les nombres doivent être
séparés par au moins un blanc.

Le système de notations utilisé en FORTH est appelé notation
POSTFIXE car on donne d'abord les opérandes et ensuite l'opérateur.

3

����������	������	���

���

PROCEDURES DE CALCUL ENTIER

nom fonction après

addition .des 2
nombres au sommet

soustraction

multiplication

division

division avec
reste

reste de 1 a division
(modulo)

ppposé du nombre au
sommet

valeur absolue du
nombre au sommet

avant

PROCEDURES DE MANIPULATION DE LA PILE

Ces procédures ont pour but de modifier l'ordre dans lequel se trouvent certains
éléments de la pile, ce qui permet d'étendre les possibilités de calcul.

DUP

DROP

S WA P

OVER

ROT

n NOVER

n NDUP

duplifie l'élément se
trouvant au sommet

enlève l'élément au sommet

change 1'ordre des 2
éléments du sommet

copie le 2ème élément
au-dessus du premier

rotation des 3 éléments
du sommet

copie le nieme élément

au-dessus du sommet

duplifie les n éléments
supérieurs de la pile

����������	������	���

���

EXEMPLES

17 43 SWAP 6 99 DROP 6 99 OVER

-77 31 32444 ROT

us

15 DUP *

44
• ^86

1789 44 5 5 31 92 5 NOVER

3
SS

1 ?
] 8 81------

9 88 2 NDUP 6 15 SWAP DROP

6 DUP DUP + + 75 100 SWAP -

R5

EXERCICE 2:

a) Ecrire les séquences qui permettent de passer de l'état 1 de la pile à
l'ecat 2, puis vérifier les résultats, en utilisant le FORTH.

b) A partir d'un nombre déposé sur la pile, calculer

. le double du nombre (sans utiliser *)

. le triple du nombre (sans utiliser *)

. le quadruple (sans utiliser *) 2 méthodes

. le carré

. le carré du double

c) A partir de deux nombres sur la pile (a et b) calculer

. (a-b)*a

. (a-b)*(a-b)

. a/(b-(a*b))

Il est absolument nécessaire d'avoir bien compris toutes les procédures décrites.
De plus, un bon entraînement est recommandé pour apprendre à s'en servir
efficacement.

5

����������	������	���

���

.3.2 COMMENT CONSTRUIRE UN PROGRAMME FORTH A L'AIDE DES PROCEDURES

Si on a un problème (P) à résoudre en FORTH, on essaie tout d'abord de le
décomposer en plusieurs sous-problèmes (PA, PB, PC, ...) plus simples à
résoudre; si parmi ces sous-problèmes certains sont encore trop compliqués,
on peut les décomposer à leur tour en sous-sous-problèmes et ainsi de suite
jusqu'à obtenir une (grande) quantité de petits problèmes simples que l'on
peut résoudre par des procédures FORTH de petite taille (de 2 à 30 instructions).
Le fait d'avoir beaucoup de petites procédures augmente la clarté du programme
et permet une mise au point rapide et aisée.

Traduction en FORTHDécomposition du problème

: Cl /instructions/ ;
: C2 /instructions/ ;
: C3 /instructions/ ;
: C4 /instructions/ ;
: C5 /instructions/ ;
: C6 /instructions/ ;

: B1 Cl C2 C3 C4 ;
: B2 /instructions/ ;
: B3 C5 C6 ;

: A B1 B2 B3 ;

Pour tester séparément une procédure, on met sur la pile les arguments
dont elle a besoin et on l'exécute. Si on retrouve sur la pile le résultat
escompté, on peut considérer que la procédure est correcte (deux essais valent
mieux qu'un !). Si par contre la procédure donne un résultat faux, il faut
commencer par vérifier si les instructions de la procédure correspondent
à ce que l'on veut faire; si c'est le cas, il faut alors tester toutes les
procédures appelées par celle là et trouver celle(s) qui est (sont) incorrecte(s)
et les corriger selon la même méthode.

NB: plus une procédure est longue, plus elle est difficile à mettre au point!

COMMENTAIRES. La procédure (- a pour effet de suspendre la compilation du texte
tapé jusqu'au premier) rencontré ou., s'il n'y en a pas,
jusqu'à la fin de la ligne. ’

Par exemple: : SX DUP DUP * + (CALCULE X*X+X) ;

Il doit toujours y avoir au moins un blanc entre (et le début
du texte dû commentaire.

ECRITURE STANDARD DES NOMBRES ET DES TEXTES

Il existe plusieurs procédures permettant d'imprimer des nombres et des
textes en format standard. Nous verrons plus tard des méthodes plus com­
plètes d'entrée/sortie.

DECIMAL

OCTAL

CR

place le FORTH en mode d'entrée sortie décimale (normal)

entrées-sorties en base 8

imprime le nombre au sommet de la pile sur le terminal en décimal
ou en octal

passe au début de la ligne suivante

imprime le texte qui suit jusqu'au prochain " sur le terminal
(le premier " doit être séparé du texte par un blanc)

����������	������	���

���

EXEMPLES:

: IMPRIME " LE NOMBRE EST:
6 IMPRIME *

LE NOMBRE EST: 6

22 OCTAL IMPRIME /

LE NOMBRE EST : 26

IMPRESSION) ; a

7 1 + . (EXEMPLE DE CALCUL EN BASE 8) J.

10

DECIMAL /
: AZX DUP 1 - * " X FOIS X-l =" . ; /
6 AZX >

X FOIS X-l = 30

5 AZX 8 AZX/

X FOIS X-l = 20 X FOIS x-l = 56’ ---------- - _ _

5 AZX CR 8 AZX

X FOIS X-l = 20
X FOIS X-l = 56

REMARQUE: la procédure " ne peut être appelée que depuis une autre
procédure, elle ne peut pas être exécutée directement en
mode interpréteur

3.3 DESTRUCTION DE PROCEDURES

forget] Cette procédure, suivie d'un nom de procédure enlève du dictionnaire
toutes les procédures créées après celle spécifiée y compris.

Cela signifie que si l'on crée une procédure A, puis une autre B, on ne
peut supprimer A sans en même temps supprimer B.

Le FORGET est très utile lorsqu'on s'aperçoit que la dernière procédure
entrée contient une faute, on peut l'enlever, puis la retaper.

: QUARK DUP * / ; /
FORGET QUARK/
: QUARK SWAP * / . U

ATTENTION: FORGET suivi d'un nom de procédure qui n'existe pas, ou suivi d'aucun
nom de procédure, détruit toutes les procédures de calcul avec des

• nombre réels, ainsi que toutes les procédures graphiques.

LES NOMS DE PROCEDURES

Un nom de procédure peut contenir jusqu'à 55 caractères, cependant le FORTH
ne tient compte que des trois premiers et de la longueur totale du nom
(afin d'économiser de la place en mémoire). Ainsi si deux noms de procédure
ont la même longueur et commençent par les trois mêmes caractères, ils sont
synonymes. Dans ce cas, toutes les références faites à l'un ou l'autre nom
se rapporteront à celui qui a été défini en dernier. Le fait d'avoir des
synonymes dans le dictionnaire FORTH n'est pas considéré comme une erreur,
c'est à l'utilisateur de se méfier de ce phénomène.

8
7.3-3

����������	������	���

���

EXEMPLES:

: AAARTX " A+B = " + .
: AAATTY " A-B = " - .
6 8 AAARTX>

A-B = -2 (c'est AAATTY qui a été exécutée)

FORGET AAATTY^
6 8 AAARTXX

A+B = 14 (cette fois on a la bonne procédure I)

ERREURS DE COMPILATION

Si une procédure appelée n'existe pas, le compilateur imprime comme
message d'erreur le nom en question suivi d'un point d'interrogation.

EXEMPLE:

: WW SWAP - DUL . U

DUL .;■ 1 (cette procédure n'existe pas)

FORGET WW : WW SWAP - DUP . (on efface tout et on recommence)

OK (maintenant tout est OK)

4.1 LES PROCEDURES DE CALCUL REEL

Un nombre
Le format

réel est formé de deux mots mémoire, donc de deux éléments de la pile,
adopté pour les réels est le suivant:

Par exemple:Un nombre réel doit toujours être suivi d'un point.

-1. 15.0 6.02

F/

addition des 2 réels sur la pile

mu 1tiplication

soustraction

division

ATAN

COS

arctangente du réel sur la pile
I

cosinus

EXP

FABS

exponentiel le

valeur absolue

FMINUS

LN

LOG

opposé

logarithme naturel

logarithme en base 10

SIN sinus

SQRT

TAN
racine carrée

tangente

����������	������	���

���

° 4.2 CONVERSIONS ENTIERS - REELS

FLOAT

FIX

transforme l'entier sur la pile (1 mot) en son équivalent réel
(2 mots).

opération inverse de FLOAT, transforme le réel (2 mots) en entier
(1 mot). Il faut s'assurer que le réel en question est compris
entre -32768.0 et 32767.0

Float EMTÀtR

MANIPULATION DE LA PILE AVEC DES ELEMENTS DOUBLES

Toutes les procédures de manipulation de la pile avec des éléments simples
ont leur équivalent pour les doubles sauf NOVER et NDUP.

FDUP

FSWAP

FOVER

FDROP

FROT

duplifie les deux éléments du
réel qui s'y trouve

SWAP avec deux réels

OVER avec deux réels

DROP avec un réel

ROT avec trois réels

sommet de la pile c'edt-à-dire le

□ 4.3. IMPRESSION DES REELS

la procédure E. imprime sur la console le réel se
trouvant sur la pile selon un format exponentiel

EXEMPLES:

3.2 E. 1615.2 E.J

.3200000E+01 ,1615200E+04

3.3 E.J

.3300000E+01

5.1 6.1 5.5 FSWAP E.J

.6100000E+01

F/ E.J

.9272727E+00

1.2 2.1 F+ E.J

.3300000E4-01

5.676 SIN E. 5.676 COS E.J

-.5705520E+00 .8212594E+00

1.2 SIN SQRT E.J-

.9654226E+00
10

����������	������	���

���

: FCARRE FDUP F* ;
1.1 SIN FCARRE 1.1 COS FCARRE F+ E.

0.9999990E+00

EXERCICE 3.

Ecrire des procédures permettant de calculer:
y

a) X d'après la formule = exp(y*ln(x))
b) ARCSIN(X) selon la formule arcsin(x) = arctan((l-x^) Vx)

c) La distance entre deux points de R^ de coordonnées (XpX2) et (ypy£)
en prenant la formule d = sqrt((x]-y-|)2+ (x2-y2/)

d) La surface d'un cercle de rayon donné

5 INSTRUCTIONS DE TEST ET DE REPETITION

ratio

AND

OR

XOR

NOT

□ 5.1 FONCTIONS LOGIQUES

En FORTH les deux valeurs logiques "vrai" et "faux" sont représentées par
les variables entières 1 et 0. On peut effectuer sur ces valeurs les opé-

logiques habituelles grâce aux procédures suivantes:

et logique des deux valeurs au sommet de la pile

ou logique

ou exclusif

non

EXEMPLES:

0 1 OR

1 (faux ou vrai = vrai)

1 0 AND

0 (vrai et faux = faux)

0 0 OR 1 AND

0 - ((faux ou faux) et vrai = faux)

Il existe aussi des procédures
nombres entiers ou réels et le

dites de test dont les arguments sont des
résultat une valeur logique.

De même

prend les deux entiers au sommet, les compare et dépose 1 sur
la pile s'ils étaient égaux, 0 sinon.

dépose 1 si A>B

dépose 1 si A<B

pour les réels:

0 sinon

0 sinon

donnent 1 ou 0 selon que le test est vrai ou faux

����������	������	���

���

EXEMPLES:

5.676 4.3 SIN F> .j

2

□ 5.2 IF...THEN

Les instructions IF...THEN permettent d'exécuter une séquence de programme
seulement si une certaine fonction logique a donné un résultat vrai (1 sur la
pile). Le IF...THEN s'emploie gégéralement de la manière suivante:

... /fonctions donnant un résultat logique/ IF /séquence/ THEN ...

La séquence d'instructions entre IF et THEN est exécutée seulement si la
valeur logique sur la pile avant IF vaut 1.

: DIVISE (on effectue la division seulement si le
DUP 0 = NOT IF / THEN ; diviseur est différent de zéro)
6 2 DIVISE .p

3
— (division effectuée)

76 0 DIVISE

0

. (division non effectuée)

76

: DIV2(cette procédure divise un nombre par 2
DUP 2 MOD 0 = >!■ seulement s'il est pair)
IF 2 / THEN
456 DIV2

228

9999 DIV2 .;

9999

REMARQUES: Le IF supprime de la pile la valeur logique qui s'y trouve.
Il faut se souvenir que les différents tests logiques suppriment
les nombres testés de la pile; il faut donc duplifier les nombres
qui doivent servir après le test. Le THEN doit toujours être
présent car il indique la fin de la séquence à exécuter
conditionnellement.

12

����������	������	���

���

EXEMPLE:

: LIMITA
DUP 100 ? OVER 8 < OR /
IF DROP 99 THEN " VOICI LE NOMBRE:"
2 LIMITA

(cette procédure remplace le nombre sur
la pile par un 99 si celui-ci est plus grand
grand que 100 ou plus petit que 8)

VOICI LE NOMBRE: 99

69 LIMITA
VOICI LE NOMBRE: 69

5.3 IF...ELSE...THEN

Avec ces instructions, on peut exécuter la séquence si la condition avant IF
est vraie ou une autre séquence si elle est fausse.

... /condition/ IF /séquencel/ ELSE /séquence2/ THEN ...

Si la condition (=fonction logique) a donné un résultat vrai
est exécutée, sinon c'est la séquence2

, la séquencel

EXEMPLE:

: TEST-SGN 0 < IF " NOMBRE NEGATIF" ELSE "
4 TEST-SIGN A

NOMBRE POSITIF

-89 TEST-SGN /

NOMBRE NEGATIF

47-3 + 2*-!/ TEST-SGN/

NOMBRE POSITIF

: RACINE FDUP 0.0 F> IF " LA RACINE VAUT:
FDROP THEN ; ,2
6.2 RACINE/

LA RACINE VAUT: 0.2489981E+01

-67. RACINE y

ERREUR NOMBRE NEGATIF

NOMBRE POSITIF THEN ; J-

SQRT E. ELSE ERREUR NOMBRE NEGATIF"2

5.4 BEGIN...END

Ces deux instructions servent à faire répéter une séquence jusqu'à ce qu'une
condition soit vraie.

... BEGIN /séquence/ /condition/ END ...(

EXEMPLES:

1) Multiplier le nombre sur la pile par 3 jusqu'à ce qu'il
que 1000.

soit plus grand

: EX1 BEGIN 3 * DUP 1000 > END
25 EX1 ..1

2025

����������	������	���

���

2) Imprimer tous les multiples

: EX2 7 BEGIN DUP . CR 7 + DUP
EX2 ?

de 7 plus petits que 60.

60 > END DROP ;

7
14
21
21
35
42
49
56

3) Soient trois nombres sur la pile, on veut diviser le plus grand des deux
par 2 et répéter l'opération jusqu'à ce que l'on obtienne deux nombres
égaux.

: ZZ BEGIN A
2 NDUP > IF SWAP THEN 4
2 / A
2 NDUP =4
END . .
6 4 ZZA

(inverse l'ordre si le 2e est plus grand)
(divise le plus grand par 2)
(teste s'ils sont égaux)
(si oui: imprime les nombres, sinon continue)

12 14 ZZ^

3 3

4) Tabule la fonction In sin.

: FONXION LN SIN ; A-
: TABULE 0.5A
" TABULATION DE LA FONCTION SIN(LN(X)) DE 0.5
BEGINA
FDUP E. /
FDUP FONXION E.>
CR 0.3 F+ (INCREMENT) FDUP 10.0 F>A
END
TABULER

(valeur de départ)
A 10.0" CR CRA

(imprime X)
(imprime F(X))
(test de fin)

TABULATION DE LA FONCTION SIN(LN(X)) DE 0.5 A 10.0

.500000E+00 -.638592E+00

..800000E+00_____________

14

����������	������	���

���

5.5 BEGIN...IF...WHILE

Avec ces instructions de répétition, on fait la séquence tant qu'une
condition est vraie.

...BEGIN /condition/ IF /séquence/ WHILE...

EXEMPLES:

1. Calculer la somme des entiers de 1 à n (n sur la pile)

: SOMME 0 BEGIN OVER 0>^ (commence avec une somme nulle, teste si n > 0)
IF OVER + SWAP 1 - SWAPJ (si oui additionne n à la somme et Ôte 1 à n)
WHILE . DROP (recommence...imprime la somme et supprime n

6 SOMMES (qui vaut maintenent 0)

2) Soustrait 5 au nombre sur la pile et imprime le nombre restant tant
que celui-ci est plus grand que 9.

: S5 BEGIN DUP 9^
IF DUP " RESTE: " . CR^
5 - WHILE DROP ;)

12 S5

RESTE: 12

6 S5^

(rien n'est imprimé vu que le nombre de départ est inférieur à -9).

REMARQUE: dans un BEGIN-END la séquence est toujours exécutée au moins
une fois vu que le test se fait à la fin; tandis qu'avec
BEGIN-IF-WHILE la séquence peut ne pas être exécutée une seule
fois si la condition est fausse dès le départ comme dans le
dernier cas de l'exemple 2.

5.6 DO...LOOP et DO... +LOOP

Ces instructions font exécuter une séquence tant que l'indice spécifié
est plus petit que se valeur maximale. Chaque exécution de la séquence
additionne 1 à l'indice ou un nombre quelconque si on utilise +LOOP.
L'indice de départ et sa limite sont initalisés par les deux entiers se
trouvant sur la pile au moment de l'exécution du DO.

imax' imin DO /séquence/ LOOP | ou

La procédure I dépose sur la pile la valeur actuelle de l'indice.

EXEMPLES:

1) Ecrire 3 fois "ça tourne" sur 1' écran.

: ECRIT 3 1 DO *
" CA TOURNE" CR^
LOOP ;j
ECRITE

(1'indice ira de 1 à 3)
(impression)

CA TOURNE
CA TOURNE
CA TOURNE

����������	������	���

���

I

2 . Imprimer les nombres entiers de 8 è 15

: ENTIERS 15 8 DO I . LOOP
ENTIERS?

8 9 10 11 12 13 14 15

3) Imprimer une * sur l'écran en ne position, où n est le nombre sur
la pile.

: XXX 1 DO " " LOOP " *" •
4 XXX^

20 XXX?

: CCC 10 2 DO I DUP * 2 / XXX CR LOOP ; CCC?

*
a 5.7 RESUME DES INSTRUCTIONS CONDITIONNELLES ET REPETITIVES

����������	������	���

���

Toutes ces instructions peuvent être combinées pour obtenir des structures
plus complexes. Par exemple, introduire un DO...LOOP à l'intérieur de la
séquence contrôlée par un BEGIN...END.

On remarquera que les organigrammes précédents ont tous un seul point d'entrée
et un seul point de sortie ce qui permet un bon contrôle de la logique du
programme. Il est bien entendu que ces différentes structures ne peuvent pas
se chevaucher.

EXEMPLE: ... IF ... BEGIN ...THEN ... END ... est totalement faux.

Par contre, on peut toujours les imbriquer les uns dans les autres.

EXEMPLE:

IF ... BEGIN ... END
ELSE ... IF ... DO ... LOOP

ELSE...
THEN

THEN

6.1 LES VARIABLES

Les variables sont des zones de mémoire de taille et de structure diverses
qui sont repérées par un nom. Dans une variable on peut stocker: un entier,
un réel,.un caractère, etc. Il existe un type de variable pour chaque type
de donnée traitée par le FORTH.

VARIABLES SIMPLES

n INTEGER nom

r FLOATING nom

Définit une variable pouvant contenir un entier,
c'est à dire occupant 1 mot mémoire.
La variable porte le nom indiqué après INTEGER et contient
comme valeur initiale lie nombre n.

Définit une variable de type réel (2 mots) dont la
valeur initiale est r.

6.2 UTILISATION DES VARIABLES

Les deux opérations de base portant sur les variables sont:

. transférer le contenu du sommet de la pile dans une variable

. prendre le contenu d'une variable et le déposer sur la pile.

L'appel d'une variable se fait comme pour les procédures simplement
en donnait un nom. L'appel d'une variable a pour effet de déposer
sur la pile l'adresse mémoire de celle-ci; on peut ensuite en utilisant
la procédure adéquate soit amener sur la pile la valeur se trouvant à
cette adresse (c'est-à-dire dans cette variable), soit déposer à cette
adresse ce qui se trouve sous le sommet de la pile.

Remplace l'adresse au sommet
de la pile par le mot (16 bits)
se trouvant à cette adresse

Remplace l'adresse au sommet
de la pile par les deux mots
se trouvant à l'adresse et
à 1'adresse+1.

����������	������	���

���

Dépose la valeur sous le sommet
de la pile à l'adresse indiquée
par le sommet

■
Comme ! mais avec les deux
mots sous le sommet.

comme & , mais sur 1 byte

comme ! , mais sur 1 byte

EXEMPLES:

569 INTEGER AA -i
AAJ

(définit une variable entière contenant 569)
(dépose l'adresse AA sur la pile)
(met sur la pile le contenu de AA)
(et 1'imprime)

33 INTEGER BB
777^
BB^

BB & .

777

(777 sur la pile)
(adresse BB par dessus)
(met le 777 dans BB)
(on vérifie que BB contient bien 777 maintenant)

AA & 31 +
BB !
BB &

600

(contenu de AA + 31)
(dans BB)

(nouvelle valeur de BB)

Les variables peuvent être utiles lorsqu'il devient difficile de manipuler
la pile parce qu'elle contient trop de données à utiliser en même temps.

Ajoute le nombre sous la pile au contenu
dont l'adresse se trouve au sommet de la

du mot mémoire
pile

AA & . ;

_5 69

11 AA +: +
AA &

580

(additionne 11 à AA)

0.0 FLOATING MAXI 0.0 FLOATING PAS
: TAB (tabulation d'une fonction sinus avec possibilité

d'indiquer les limites et le pas)
PAS F! MAXI F! (les deux nombres sur la pile sont le pas et le max.)
BEGIN FDUP MAXI F& F<^ (teste si la valeur est plus grande que max.)
IF FDUP E. FDUP SIN E. CR** (si non calcule et imprime)
PAS FS F+ WHILE FDROP (incrément? le nombre sur la pile et continue
0.0 6.3 0.5 TAB^

0.00000E 00 0.0000E_00_
n çoqqoe 01

����������	������	���

���

TABLEAUX

N ARRAY nom

N FARRAY nom

définit un tableau d'entiers de N éléments.
Les éléments du tableau ne sont pas initialisés.

définit un tableau de réals de N éléments.

6.3 UTILISATION DES TABLEAUX

Pour obtenir l'adresse d'un élément d'un tableau, il faut déposer sur le pile
le numéro de l'élément désiré, puis donner le nom du tableau; on peut ensuite
utiliser les procédures ! et & pour les ARRAYs et F! et F& pour les
FARRAYs.

EXEMPLES:

5 ARRAY TB<*
333 1 TB >
299 4 TB**
1 TB & •

333

(définit un tableau de 5 éléments entiers)
(met 333 dans le premier élément du tableau)
(met 299 dans le quatrième élément du tableau)
(imprime le contenu du premier élément)

: TBIMPRIME'*
5 1 DO^

i tb
. LOOP

77 2 TB ! -56 3 TB
TBIMPRIME>

(procédure pour imprimer tous les éléments de TB)
(boucle de 1 à 5, car il y a 5 éléments)
(prend le contenu du le-- élément. I vaut 1, puis 2, 3...)
(imprime et continue la boucle)

! 31888 5 TB U (place des nombres dans TB)

333 77 -56 299 31888

: TB/2 z (procédure pour diviser par 2 tous les éléments de TB)
5 1 DO '

I TB & 2 / I TB iz (divise l'élément par 2 et remplace par le résultat)
LOOP

TB/2 TB IMPRIME/

166 38 -28 149 15944

: IMPIOO-^ (imprime les éléments du tableau qui sont supérieurs à 100)
5 1 DO I TB & 100 > z

IF I TB & . THEN^
LOOP ; /

IMPI 00x

166 149 15944

REMARQUE:

. Si à l'intérieur d'une boucle DO ... LOOP on appelle une procédure,
il n'est pas possible d'utiliser I dans cette procédure. Si on a besoin
de l'indice de la boucle dans la procédure en question, il faut soit le
déposer dans la pile avant d'appeler cette procédure, soit le stocker dans
une variable de façon à ce que la procédure puisse l'atteindre.

19

����������	������	���

���

EXERCICES:

1) Ecrire une procédure qui calcule le carré d'un nombre, mais seulement
si le nombre est plus petit que 1000 en valeur absolue.

2) Même problème qu'avant, mais cette fois on imprime un message indiquant
que le nombre n'a pas été mis au carré.

4) A partir d'un nombre sur la pile, imprimer le double dudit nombre, puis
le double du double, et ainsi de suite jusqu'à ce que le dernier nombre
imprimé soi plus grand que 2000.

4) Ecrire une procédure qui trouve tous les diviseurs d'un nombre donné et les
imprime (A est diviseur de B, si B module A = 0).

*

5) Ecrire une procédure qui cherche le plus petit élément d'un AARAY.

6) Ecrire une procédure qui donne l'indice du premier élément d'un ARRAY
qui est plus petit que 10 ou imprime un message s'il n'y en a pas.

7) Ecrire une procédure qui classe en ordre croissant les éléments d'un ARRAY
(tri par échange ou tri pas bulles).

8) Ecrire une procédure qui dessine une fonction sur le terminal à T'aide de * .

9) Ecrire des procédures de calcul matriciel: addition de matrices, multiplica­
tion par un scalaire et multiplication matricielle.

(EXEMPLE: créer une matrice 7,4:

28 FLOATING MU
: MT1 1 - SWAP 1 - 4 * + Ml
6 2 MT1 F& ... 7.283 3 3 MT1 F!^

20

����������	������	���

���

7 TRAITEMENT DES CARACTERES

7.1 CODE ASCII DES CARACTERES

A chaque caractère alphanumérique existant correspond un nombre qui est
utilisé pour représenter ce caractère dans la mémoire totalement numérique
de 11ordinateur. Ce nombre est le code ASCII du caractère

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57

0
1
2
3
4
5
6
7
8
9

60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

100
A 101
B 102
C 103
D 104
E 105
F 106
G 107
H 110
I 111
J 112
K 113
L 114
M 115
N 116
0 117

P
Q
R
S

U
V
W
X
Y
Z
L

a
j
;

120
121
122 i
123
124
125
126
127
130
131
132
133
134
135
136
137

W

Ainsi, si on tape sur la touche C d'un clavier, la machine recevra le
nombre 303g. Incersément, si l'ordinateur envoie le nombre 107g ,
l'écran affichera un G .

On remarque que les codes ASCII sont dans un ordre relativement logique,
c'est-à-dire qui correspond à l'ordre alphanumérique habituel.
De ce fait, si l'on veut trier dans l'ordre alphabétique une série de carac­
tères, il suffit de trier leurs codes ASCII dans l'ordre numérique.

imprime le caractère qui est sur la pile

21

����������	������	���

���

8.1 GRAPHISME SUR L'ECRAN SMAKY6

Le software graphique du FORTH est un ensemble de procédures permettant
de dessiner sur l'écran.

L'écran peut travailler sous deux modes:

.- mode alphanumérique: les coordonnées transmises par l'ordinateur
sont affichées sous forme de lettres et de chiffres

. mode graphique: les données reçues sont considérées comme les coordonnées
d'un point de 1'écran.

Les coordonéées de l'écran
et de 0 à 119 en Y.

PROCEDURES GRAPHIQUES

graphique du SMAKY6 s'étendent de 0 à 255 en X

I CMOD

AG-DISP

A-DISP

G-DISP

NEW

initialise le mode graphique I

(1=0 effacement 1=4 ----------
I = 1 trait normal I = 5' — ■— : —
1 = 2 1 = 6 4- + + +
1=3 —)

allume l'écran graphique et l'écran alphanumérique *
allume l'écran alphanumérique

allume l'écran graphique

initialise un nouveau dessin
(le prochain point tracé ne sera pas relié au précédent)

8.2 DEFINITION DE L'ESPACE DE TRAVAIL SUR LE TERMINAL

! xmin xmax ymin ymax VIEWPORT

nombres entiers

détermine la portion de l'écran
qui va être utilisée pour le dessin

EXEMPLE:

Si on ne veut dessiner que dans

0 127 0 119 VIEWPORT

Tout segment dont une extrémité
pas dessiné.

la moitié gauche, on prendra

se trouve en dehors des limites ne sera

Après avoir fini un dessin, on peut redéfinir un nouveau VIEWPORT
ailleurs sur 1'écran.

22

����������	������	���

���

8.3 DEFINITION DES COORDONNEES DE L'UTILISATEUR

rxmin rxmax rymin rymax WINDOW définit le système de coordonnées
propres à l'utilisateur.

S'il veut, par exemple, traiter la
de -3 à +2, un bon choix serait de

L'utilisateur peut choisir le système
qui convient le mieux au problème qu'il
a à traiter.

3
fonction f: x —^x pour x allant
prendre

-3. 2.-30. 10. WINDOW

Si on ne sait pas à priori quel est l'expace nécessaire pour contenir le
dessin, on choisir un WINDOW assez grand, quitte à le réduire par la suite.

A tout point exprimé en coordonnées de l'utilisateur correspond un point P'
sur l'écran dont les coordonnées sont calculées par les différentes procé­
dures graphiques. L'utilisateur travaille toujours dans ses propres coordon­
nées et c'est le software graphique qui se charge de les convertir en coor­
données sur l'écran graphique.

DESSIN:

x y DRAW relie par un segment le dernier point tracé avec le point
de coordonnées (x,y).
x et y sont des nombres réels représentant les coordonnées
de l'utilisateur du point.

n FARRAY AX a FARRAY AY
1 AX a AY n CURVE

Relie les points dont les coordonnées sont
contenues dans AX pour les x et AY pour les y,
n indiquant le nombre de points à relier (n ne
doit évidemment pas excéder la dimension des
FARRAYs).

PAGE

x y DRAW

AUTRES PROCEDURES

efface l'écran

comme DRAW avec les coordonnées physiques (entières)

23

����������	������	���

���

EXEMPLES:

1) Dessiner un triangle de base 3 et dont l'angle inférieur gauche est
situé à l'orgine des coordonnées

PAGE 1 CMOD J
AG-DISP/
0 100 0 50 VIEWPORT/
-1• 4. -1. 4. WINDOWS
NEW/

(on se donne un espace de dessin carré)
(espace utilisateur)

0. 0. DRAW 0. 3. DRAW 3.3. DRAW 0. 0. DRAW G-DISP/

2) Trace la fonction f(x): x exp(-x)sin(x) de -0.5 â 10.

: FONCTION FDUP FMINUS EXP FSWAP SIN F*
: DESSIN PAGE 1 CMOD G-DISP/

0 255 0 119 VIEWPORT^ (prend tout l'écran)
-1. 5.5 -0.9 0.4 WINDOW NEW 0.5/
NEW -0.5/
BEGIN/

FDUP FDUP FONCTION DRAW /
0.1 F+ FDUP 5. F>^

END AG-DISP

DESSIN/

-1. 5.5 -0.9 0.4 WINDOW 0.5 3. 0. 0.4 WINDOW

EXERCICES:

1) Faire un programme qui dessine une étoile

2.) Dessiner la fonction x.sin(l/x) de -10. à 10.
%

3) Ecrire un programme qui dessine un cercle ou une ellipse centrée à l'origine.

24

����������	������	���

���

9 LA RECURSIVITE ET SON EMPLOI EN FORTH

On dit qu'une fonction est récursive si elle est définie à partir d'elle-
même.

Par exemple, la fonction factorielle,

= N*(N-l)*(N-2)*...*3*2*1

est telle que N! = N*(N-1) si N>0.

Autrement dit, on a une fonction F définie ainsi

1 si n=0
n*F(n-l) sinon

.9.1 LA SUITE DE FIBONACCI

Cette suite est définie de la manière suivante:

Chaque nombre de la suite vaut la somme des deux précédents, ce qui
donne 1 ,1 ,2,3,5,8,13 ,21 ,34,55,...

La fonction F(n) qui donne le nieme terme de la suite est définie par:

F(n F(n-l)+F(n-2)
si n est inférieur à 3
sinon

Nous sommes donc en présence de deux fonctions récursives.
Voyons comment les programmer en FORTH.

: FACTORIELLE (5
DUP 0 = IF^

DROP P
ELSE

DUP
1 - FACTORIELLE

THEN ;/

(test si N=0)
(dans ce cas, le résultat est 1)
(sinon)

(calcule (1-1)!
(puis N*(N-1)1

Voyons maintenant ce qui se passe lorsqu'on calcule 4

PROGRAMME PILE

FACTORIELLE
(1) 4*0 FACTORIELLE 4
(1)3/0 FACTORIELLE 4 3
(1)2^0 FACTORIELLE 432
(1) 1/0 FACTORIELLE 4321
(1) 0=0 1 sur pile et ; 43210
(2) * ; 43211
(2) * ; 4321
(2) * ; 432
(2) * ; 46
FIN 24

* __ —

Calcul du nie terme de la suite:

: FIBANACCI DUP 3 IF DROP W
ELSE DUP L - FIBANACCI J-

SWAP 2 -F FIBONACCI
+

THEN ; 25

����������	������	���

���

REMARQUE VITALE:

Une fonction récursive doit toujours présenter au moins un cas trivial
c'est-à-dire qu'il doit exister une valeur pour laquelle le calcul de la
fonction puisse être fait sans appler une nouvelle fois la procédure.

Par exemple N = J donne immédiatement le résultat 1 pour N!
Sinon le processus de calcul serait infini.

o 9.2 PROBLEME DE LA TOUR DE HANOI

Soit trois piquets et une série de disques de rayon décroissant et percés
d'un trou en leur centre empilés sur le 1er piquet.

Le jeu consiste à transférer tous les disques du piquet A sur le piquet B
tout en respectant les deux règles suivantes:

. on ne peut déplacer qu'un disque à la fois

. on doit obligatoirement déposer ce disque sur un disque
ayant un rayon supérieur au sien.

Après une intense réflexion, on se dit qu'il va falloir par un moyen quel­
conque mettre tous les disques de A sur C sauf le dernier qui ira sur B,
puis ramener les disques de C sur B. Reste à savoir comment on va déplacer
les N-l disques de A vers C. Il suffit en fait d'utiliser le même raisonne­
ment que pour A vers B, mais avec un disque de moins. De même pour C vers B.
On peut alors généraliser cette méthode en considérant une fonction
D(d,a,t,n) où d est le piquet de départ, a le piquet d'arrivée,

t le piquet de transition et n le nombre de disques à déplacer.

D peut alors se définir ainsi:

si n^l D(d,a,t,n) = D(d,tsa,n-1) ®

= D(d,a,t,l)
= D(t,a,d,n-1)

Le cas trivial se produit pour n=l (prendre le disque au sommet de d et
le poser sur a).

□ 9.3 UTILISATION DES VARIABLES POUR LES PROCEDURES RECURSIVES

Si une procédure récursive utilise des variables, il faut se souvenir
que celles-ci seront modifiées à chaque passage dans la procédure.

Supposons qu'une procédure P soit construite de la manière suivante:

: P ... A«! ... P ... A & ... ;

il y a de fortes chances qu'au moment où l'on fait A & on ne retrouve
pas ce qu'on a mis dans A avant d'appeler P car cet appel à P a eu bien
entendu pour effet de faire exécuter P donc la séqeunce A !
ce qui aura mis quelque chose dans A, détruisant ce qui y était précédem­
ment. Pour remédier à ce contretemps, il faut avant d'appeler P "sauver",
c'est-à-dire déposer le contenu de A sur la pile (en dessous des éléments
utilisés par P), puis au retour reprendre cette valeur de la pile et la
remettre dans A.

26

����������	������	���

���

■ 10 EDITEUR ET PROCEDURES FORTH NON STANDARD

Les commandes de l'éditeur sont les mêmes que celles du programme SMILE,
sauf pour les commandes relatives à la touche (PROGRÂ).

Pour compiler le programme situé dans le buffer courant, faire ÇPROGRAQZZ

S'il y a des fautes de compilation, toutes les procédures qui viennent
d'être compilées sont enlevées du dictionnaire, et les erreurs sont
indiquées dans le programme par des "ÎERROR".

EXEMPLE:

: ADD + PRINT ;
t ERROR

(la procédure PRINT n'existe pas)

Pour chercher une erreur, faire

Lorsqu'une faute est corrigée et que le programme est à nouveau compilé,
les messages d'erreur sont supprimés.

** Si la compilation est correcte, on passe automatiquement en mode inter­
préteur, ce qui permet d'essayer le programme.

Avant de passer au mode interpréteur, la pile est vidée.

PROCEDURES FORTH NON STANDARD

compile le texte se trouvant dans l'éditeur.
Les erreurs sont indiquées au fur et à mesure par
et un coup de.buzzer.

Lorsque la compilation est terminée, la pile n'est pas
vidée.

Les procédures compilées sont de toutes façons ajoutées au
dictionnaire, même s'il y a des fautes.

Appel de l'éditeur

impressionid'un entier
impression d'un flottant
impression d'un caractère

lecture d'un entier
lecture d'un flottant

variable d'un byte contrôlant l'impression du message 0K.
1 NOOK B! pas de 0K
0 NOOK B! ok

lecture d'un mot.
La longueur est stockée dans ID (byte) et les caractères suivants
dans WD,WD+1,...,WD+N

X puissance Y (flottants) X^>0

27

����������	������	���

���

