Mis a disposition par Jean-Daniel Nicoud Numerisé par micromusee.ch
Mars 2024

EPSITEG-system sa

Numeérisé par micromusee.ch

[/ FORTH

1 MODE D'EMPLOI SIMPLIFIE

Pour deémarrer le FORTH, il faut donner successivement les ordres suivants :

v

1) FORTH Le FORTH ne connait pas encore les procédures
standards., Pour qu'il puisse les mettre dans
son dictionnalre, 1l faut taper ensuite :

2) SHOW-DEFINE FORTH Ce qul insérxe dans le buffer d'edition
le fichier FORTH.FH

3) PROGRA-C Démarre la compilation
4) END Retourne dans l'eéditeur,.
5) CURSGCR—-KILL-0 Vide le contenu du buffer d'éedition.

Le FORTH est maintenant prét pour une utilisation normale.

Prenons par exemple une procédure qui additionne deux nombres et qui affiche le
resultat sur l'écran:

:ADD+.;.
Pour la compililer, 1l faut taper : PROGRA~-C

Si la compilation est correcte, nous nous trouvons automatiquement dans
l'interpréteur FORTH. Dans le cas contraire, nous restons dans l'éditeur et la
ou les erreurs sont signalées par une fléche suivie du message d'erreur.

Depuis l'interpreteur FORTH, nous pouvons esgsayer la proceédure ADD en
tapant: 2 3 ADD
L'écran montre alors 5.

Pour retourner dans l'éditeur, 11 faut appuyer sur END.
Depuis l'éditeur, il est posgsible d'aller dans l'interpréteur FORTH et tapant:
PROGRA-F

L'interpréteur FORTH permet de taper des lignes qui sont interprétées sitot que
le CR a été donné.

Résume
PROGRA-C (sans erreurs)
[= o = ——m— e | PROGRA~F [——
! e > |
, fd 1"!'67’.11.’ [! Interpréteur

l | FORTH

emn Seey A ew Ppes

Numeérisé par micromusee.ch

" 2. LA PILE ARITHMETIQUE

L:arithrpétique du .FORTH est basée sur 1'emploi d'une pile polonaise;
c'est 1a 1'une des principales caractéristiques du FORTH.

La pile arithmétique (ou polonaise) est une zone de mémoire dont on se sert
en'FORTH pour stocker les arguments des diverses fonctions utilisées; lors-
qu une fonction a &té exécutée, elle supprime les arguments de la pile et

met en place le résultat. L'utilisation d'une pile se fait selon deux princi+
pes.

1. Lorsque 1'on dépose un nouvel élément sur la pile, il vient se placer au-
dessus de tous les autres.

[c |

C
N
— BEd ==
A __a
2. De méme, on ne peut retirer que 1'é1ément se trouvant au sommet de la pile

/'

C -
5 b
a L

(On agit comme si on se trouvait en présence d'une pile d'assiettes qui a
tendance @ s'écrouler si on enléve une assiette se trouvant au milieu).

On remarque cue le premier élément & entrer dans la pile sera le dernier a en
sortir.

En FORTH, Tes éléments de la pile sont des mots mémoire (16 bits) pouvant
représenter un nombre entier (de -32768 & +32767) ou un caractére selon le

code ASCII. On peut aussi considérer des éléments formés de deux mots (32 bits)
servant 4 la représentation des nombres réels (de -1039 a +1039).

Toutes les fonctions du FORTH utilisent comme arguments les éléments se trou-
vant au sommet de la pile. Prenons par exemple la fonction addition et voyons
comment il faut procéder pour faire la somme de deux nombres

| 2) Exécuter la pro- '3) Imprimer le résultat
. cédure d'addition L
‘ | | 1 [e "NArN
-

1) Déposer les 2 nombres
au sommet de la pile

=

Numeérisé par micromusee.ch

Ce qui donne 1a séquence FORTH suivante: [56 349 +] 2

Lorsqu'on imprime un élément (ordre +/), on l'enléve de la pile .

Pour pouvoir essayer cette séquence et toutes les suivantes, i1 faut se
mettre en mode interpréteur ((PROGRAQ F)).

Les ordres ou les nombres doivent &tre séparés par des espaces ou des
tabulateurs.

AUTRE EXEMPLE:

S01t a calculer: (6*(4-23))

Mettre 6 Mettre 4 Mettre 23 soustraction mu1t1p11cat1on
sur lapile surlapile surlapile (-) (*)
3
6% (4-23) bx(4-23))/8
fettre 8 Division
sur la pile (/)

En FORTH: |6 4 23 - * 8 /

L'opération mettre ... sur la pile est sous-entendue & chaaue fois qu'on
donne un nombre. Elle est dond efifectuée autcmat1quement pour tout nombre
donné. Par contre le résultat final n'est pas imprimé et reste sur la p11e

jusau'a ce qu'on appe]]e la fonction . qui T'enléve de la pile et 1'imprime
sur le terminal.

ENCORE UN EXEMPLE: Calculons 8+5+(2*5)-(7+6)
Fn FORTH: |85 + 25 * + 7 6 + -

EXERCICE1: Ecrire les séquences FORTH permettant de calculer:
1) 3*(9+2)
2) 5/(4-3-5)
3) 6-((5-3)/4*(2-11))+7)

ATTENTION: En FORTH toutes les fonctions et tous les nombres doivent &tre
séparés par au moins un blanc.

Le systéme de notations utilisé en FORTH est aopelé& notation
POSTFIXE car on donne d'abord les opérandes et ensuite 1'opérateur.

Numeérisé par micromusee.ch

PROCEDURES DE CALCUL ENTIER

nom

/MOD

MCD

MINUS

ABS

fonction | avant aprés

addition .des 2

nombres au sommet -
soustraction A-B

multiplication L:]{;]{:J
division 1:1525i::|

A/B

division avec
- reste

reste

reste de la division
(modulo) restre
Opposé du nombre au
sommet

valeur absolue du
nombre au sonmet

B H HHH M

BHEE

PROCEDURES DE MANIPULATION DE LA PILE

Ces procédures ont pour but de modifier 1'ordre dans Tequel se trouvent certains
eéléments de la pile, ce qui permet d'étendre les possibilités de calcul.

DUP

DROP

SWAP

OVER

ROT

n NOVER

n NDUP

x
duplifie 1'@lément se Y ‘_—_:}
trouvant au sommet . S
enléve 1'élément au sommet %‘ E-——Z——-l—

i> X
change 1'ordre des 2 Y

éd1éments du sommet o
¥
copie le 2éme élément 4 ‘> Y
au-dessus du premier X X
rotation des 3 éléments Z "W ;_
du sommet Y - ‘
J -
ieme

copie le n élément | .
au-dessus du sommet aﬁ) E
duplifie Tes n &léments \
superieurs de la pile ..._..__..\(3 J

' ““E%E%J b

EXEMPLES
A7
A3 3 { G l
17 43 17 43 SWAP 6 99 DROP

-/7 31 32444 ROT 1789 44 5531 925 NOVER

9 88 2 NDUP

Numeérisé par micromusee.ch

f’é’l

6 15 SWAP DROP

225 !IIII i!lll
15 DUP * 6 DUP DUP + + 75 100 SWAP -
EXERCICE 2:

a) EErire les séquences qui permettent de passer de 1'état 1 de la pile a
1"€vat 2, puis vérifier les résultats, en utilisant le FORTH.

-2_
— et
X

]

b) A partir d'un nombre déposé sur la pile, calculer

. le double du nombre (sans utiliser ¥*)
. le triple du nombre (sans utiliser *)
. 1e quadruple (sans utiliser *)
. le carré

. le carré du double

2 méthodes

c) A partir de deux nombres sur Ta pile (a et b) calculer

. (a-b)*a
. (a-b)*(a-b)
. a/(b-(a*b))

I1 est absolument nécessaire d'avoir bien compris toutes les procédures décrites.
De plus, un bon entrainement est recommandé pour apprendre & s'en servir

efficacement.

Numeérisé par micromusee.ch

0 3.2 COMMENT CONSTRUIRE UN PROGRAMME FORTH A L'AIDE DES PROCEDURES

51 on a un probléme (P) & résoudre en FORTH, on essaie tout d'abord de le
décomposer en plusieurs sous-problémes (PA, PB, PC, ...) plus simples &

résoudre; si parmi ces sous-problémes certains sont encore trop compliqués,

on peut les décomposer & Teur tour en sous-sous-problémes et ainsi de suite
Jusqu'd obtenir une (grande) quantité de petits problémes simples que 1'on

peut résoudre par des procédures FORTH de petite taille (de 2 & 30 instructions).
Le fait d'avoir beaucoup de petites procédures augmente la clarté du programme
et permet une mise au poini rapide et aisée.

Décomposition du probléme Traduction en FORTH
- : Cl /instructions/ ;
/?\

: C2 /instructions/ ;
BA §§2 3
AA

: C3 /instructions/
CqA CLC3 C4 cs C¢

: C4 /instructions/
: C5 /instructions/
: C6 /instructions/

TEEE"E T EEETE

: Bl C1 C2 C3 C4 ;
: B2 /instructions/ ;
: B3 C5 C6 ;

: A Bl B2 B3 ;

Pour tester séparément une procédure, on met sur Ta pile Tes arguments

dont elle a besoin et on 1'exécute. Si on retrouve sur Ta pile le résultat
escompté, on peut considérer que la procédure est correcte (deux essais valent
mieux qu'un .). Si par contre la procédure donne un résultat faux, i1 faut
commencer par vérifier si les instructions de la procédure correspondent

d ce que 1'on veut faire; si c'est le cas, il faut alors tester toutes les
procédures appelées par celle 1a et trouver celle(s) qui est (sont) incorrecte(s)
et les corriger selon la méme méthode.

NB: plus une procédure est longue, plus elle est difficile @ mettre au point!
COMMENTAIRES. La procédure (.a pour effet de suspendre la compilation du texte

tapé jusqu'au premier) rencoitré ou, s'il n'y en a pas,
jusqu'a la fin de la ligne. -

Par exemple: : SX DUP DUP * + (CALCULE X*X+X) ;

I1 doit toujours y avoir au moins un blanc entre (et le début
du texte du commentaire.

w

ECRITURE STANDARD DES NOMBRES ET DES TEXTES

IT existe plusieurs procédures permettant d'imprimer des nombres et des
textes en format standard. Nous verrons plus tard des méthodes plus com-
plétes d'entrée/sortie.

DECIMAL| place Te FORTH en mode d'entrée sortie décimale (normal)
entrées-sorties en base 8

imprime le nombre au sommet de la pile sur le terminal en décimal
ou en octal

passe au début de la Tigne suivante

imprime le texte qui suit jusqu'au prochain " sur le terminal
(1e premier " doit &tre séparé du texte par un blanc) :

2r1SE | .ch
EXEMPLES : Numerisé par micromusee.c

: IMPRIME " LE NOMBRE EST; " . (IMPRESSION) ; ,
6 IMPRIME #

LE NOMBRE EST: 6

22 OCTAL IMPRIME #
LE NOMBRE EST : 26

7 1 + . (EXEMPLE DE CALCUL EN BASE 8) »
10

DECIMAL #

: AZX DUP 1 - *# ™ X FOIS X-1 =" . 3}

6 AZX »

X FOIS X-1 = 30

5 AZX 8 AZX
X FOIS X-1 = 20 X FOIS x-1 = 56

5 AZX CR 8 AZX /

X FOIS X-1 = 20
<

X FOIS X-1 6

nin

REMARQUE: Ta procédure " ne peut &tre appelée que depuis une autre

procédure, elle ne peut pas étre exécutée directement en
mode interpréteur

3.3 DESTRUCTION DE PROCEDURES

- Cette procédure, suivie d'un nom de procédure enléve du dictionnaire
{FORGE toutes les procédures créées aprés celle spécifiée y compris.

Cela s1gn1f1e que si 1'on crée une procedure A, puis une autre B, on ne
peut supprimer A sans en méme temps supprimer B.

Le FORGET est trés utile]orsqu on s'apercoit que la derniére procédure
entrée contient une faute, on peut 1'enlever, puis la retaper.

: QUARK DUP * / 3,
FORGET QUARK/
: QUARK SWAP * / . ;¥

ATTENTION: FORGET suivi d'un nom de procédure qui n'existe pas, ousuivi d'aucun

nom de procédure, détruit toutes les procédures de calcul avec des
nombre réels, ainsi que toutes les procédures graphiques.

LES NOMS DE PROCEDURES

Un nom de procédure peut contenir jusqu'd 55 caractéres, cependant le FORTH
ne tient compte que des trois premiers et de la longueur totale du nom
(afin d'économiser de la place en mémoire). Ainsi si deux noms de procédure
ont 1a méme longueur et commencent par les trois mémes caractéres, ils sont
synonymes. Dans ce cas, toutes les références faites a 1'un ou 1'autre nom
se rapporteront a celui qui a &té défini en dernier. Le fait d'avoir des
synonymes dans le dictionnaire FORTH n'est pas considéré comme une erreur,
c'est & 1'utilisateur de se méfier de ce phénoméne.

7 .3=3

Numeérisé par micromusee.ch

EXEMPLES:

: AAARTX " A+B = " + .

. AAATTY " A-B = " = . ;3

6 8 AAARTX 2

A-B = -2 (c'est AAATTY qui a été exécutée)

FORGET AAATTY #
6 8 AAARTX A

A+B = 14 (cette fois on a Ta bonne procédure .)

ERREURS DE COMPILATION

S1 une procédure appelée n'existe pas, le compilateur imprime comme
message d'erreur le nom en question suivi d'un point d'interrogation.

EXEMPLE:

: WW SWAP - DUL . ;)

DUL .:.1? (cette procédure n'existe pas)

FORGET WW : WW SWAP - DUP . ;. (on efface tout et on recommence) |
OK (maintenant tout est 0K)

= 4.1 LES PROCEDURES DE CALCUL REEL

Un nombre réel est formé de deux mots mémoire, donc de deux €léments de la pile.
Le format adopté pour les réels est le suivant:

| exposant [s mantiss e

Un nombre réel doit toujours etre suivi d'un point. Par exemple:
-1. 15.0 6.02

F+ | addition des 2 réels sur la pile

F* | multiplication ‘\\\\\\\
F- | soustraction -

division

B

ATAN | arctangente du réel sur la pile
cosinus

EXP i exponentielle

FABS valeur absolue

L

FMINUS | opposé | |
LN | logarithme naturel E | -
LOG 4,logarithme en base 10 l I

SIN ’sinus

SQRT racine carrée
TAN tangente 9

Numeérisé par micromusee.ch

O 4.2 CONVERSIONS ENTIERS - REELS

FLOAT | transforme 1'entier sur la pile (1 mot) en son équivalent réel
(2 mots)

FIX opération inverse de FLOAT, transforme le réel (2 mots) en entier

(1 mot). IT faut s'assurer que le réel en question est compris
entre -32768.0 et 32767.0

MANIPULATION DE LA PILE AVEC DES ELEMENTS DOUBLES

Toutes les procédures de manipulation de 1a pile avec des é&léments simples
ont leur équivalent pour les doubles sauf NOVER et NDUP.

duplifie les deux &léments du sommet de la pile c'edt-a-dire le
réel qui s'y trouve
SWAP avec deux réels
OVER avec deux réels

DROP avec un réel

ROT avec trois réels

o 4.3. IMPRESSION DES REELS

l E. I la procédure E. imprime sur la console le réel se
trouvant sur la pile selon un format exponentiel

EXEMPLES:

J:«& Ev 10]0.2 Eud
.3200000E+01 .1615200E+04

3.5 £.4
.3300000E+01

5.1 6.1 5.5 FSWAP E./
.6100000E+0]1

F/ E. ¢
.9272727E+00

1.2 2.1 F+ E.J
.3300000E+01

5.676 SIN E. 5.676 COS E.#
-.5705520E+00 .8212594E+00

1.2 SIN SQRT E.#
.9654226E+00

10

Numeérisé par micromusee.ch

: FCARRE FDUP F* ;
1.1 SIN FCARRE 1.1 COS FCARRE F+ E.

0.9999990E+00

EXERCICE 3.

Ecrire des procédures permettant de calculer:
a) XY d'aprés 1a formule xY = exp(y*In(x))
.b) ARCSIN(X) selon la formule arcsin(x) = arctan((l-xz)é/x)

c) La distance entre deux points de R¢ de coordonnéei (X1:%X9) et (yq1,¥5)
en prenant la formule d = sqrt((xj-yq)é+ (xp-y5)<)

d) La surface d'un cercle de rayon donné

- 5 INSTRUCTIONS DE TEST ET DE REPETITION
5.1 FONCTIONS LOGIQUES

En FORTH les deux valeurs logiques "vrai" et "faux" sont représentées par
les variables entiéres 1 et @. On peut effectuer sur ces valeurs les opé-
rations logiques habituelles grdace aux procédures suivantes:

AND| et lTogique des deux valeurs au sommet de la pile

OR ou logique

XOR|{ ou exclusif

NOT| non
EXEMPLES:
0 1 0R .2
1 (faux ou vrai = vrai)
1 0 AND .)
0 (vrai et faux = faux)
0 0 OR 1T AND .»
0 . ((faux ou faux) et vrai = faux)

I1 existe aussi des procédures dites de test dont les arguments sont des
nombres entiers ou réels et le résultat une valeur logique.

= prend Tes deux entiers au sommet, les compare et dépose 1 sur
la pile s'ils étaient égaux, O sinon.

> dépose 1 si A»B 0 sinon
|

I ¢ | dépose 1si A«B 0 sinon EL
De méme pour les réels: l l/ !ﬁ ov -.L)

F= '2
F> ‘gdonnent 1 ou 0 selon que le test est vrai ou faux

F¢ 11

Numeérisé par micromusee.ch

EXEMPLES:

6 6 = .)
]

675 .
0

34*56 - <.,
0

2.676 4.3 SIN F) .)
|

o 5.2 IF...THEN

Les instructions IF...THEN permettent d'exécuter une séquence de programme
sgu]ement s1 une certaine fonction logique a donné un résultat vrai (1 sur Tla
pile). Le IF...THEN s'emploie gégéralement de la maniére suivante:

... /fonctions donnant un résultat logique/ IF /séquence/ THEN ...

La séquence d'instructions entre IF et THEN est exécutée seulement si la
valeur logique sur la pile avant IF vaut 1.

: DIVISE / (on effectue la division seulement si le
DUP 0 = NOT IF / THEN ; 2 diviseur est différent de zéro)
6 2 DIVISE .»

S (division effectuée)

/6 0 DIVISE .)

0

5 J (division non effectuée)

76

. DIV2# (cette procédure divise un nombre par 2
DUP 2 MOD @ = @ seulement s'il est pair)

IF 2 / THEN ;)

456 DIVZ .,

228

9999 DIVZ2 .3»
9999

REMARQUES: Le IF supprime de la pile la valeur logique qui s'y trouve.
I1 faut se souvenir que les différents tests logiques suppriment
les nombres testés de la pile; il faut donc duplifier les nombres
qui doivent servir aprés le test. Le THEN doit toujours &tre

présent car 11 indique Ta fin de la séquence d exécuter
conditionnellement.

12

Numeérisé par micromusee.ch

EXEMPLE:
. LIMITY ~ (cette procédure remplace Te nombre sur
DUP 100 > OVER 8 < OR/ la pile par un 99 si celui-ci est plus grand

IF DROP 99 THEN " VOICI LE NOMBRE:" . ;2 grand que 100 ou p] -
2 LIMIT, J q u plus petit que 8)

VOICI LE NOMBRE: 99

69 LIMIT
VOICI LE NOMBRE: 69

B 5.3 IF...ELSE...THEN

Avec ces instructions, on peut exécuter la séquence si la condition avant IF
est vrale ou une autre séquence si elle est fausse.

... /condition/ IF /séquencel/ ELSE /séquence2/ THEN ...

51 la condition (=fonction logique) a donné un résultat vrai, la séquencel
est exécutée, sinon c'est la séquence?

EXEMPLE:

: TEST-SGN 0 < IF " NOMBRE NEGATIF" ELSE " NOMBRE POSITIF" THEN ; 2
4 TEST-SIGN »

NOMBRE POSITIF

-89 TEST-SGN
NOMBRE NEGATIF

47 -3 +2 * -1 / TEST-SGN 2
NOMBRE POSITIF
: RACINE FDUP 0.0 F> IF "™ LA RACINE VAUT: " SQRT E. ELSE " ERREUR NOMBRE NEGATIF" .

FDROP THEN 3 n
6.2 RACINE#

LA RACINE VAUT: 0.2489981E+01

-67. RACINE »
ERREUR NOMBRE NEGATIF

o 5.4 BEGIN...END

Ces deux instructions servent a faire répéter une séquence jusqu'a ce qu'une
condition soi1t vraie.

.. BEGIN /séquence/ /condition/ END ...

EXEMPLES:

1) Multiplier le nombre sur la pile par 3 jusqu'd@ ce qu'il soit plus grand
que 1000.

+ EX1 BEGIN 3 * DUP 1000 » END ;.
o EXl 3

3
2025 |

Numeérisé par micromusee.ch

2) Imprimer tous les multiples de 7 plus petits que 60.

: EX2 7 BEGIN DUP . CR 7 + DUP 60 > END DROP ; 2
EX2 »

—I~
—|

cnl 5l -bl w! POl Nl
| | ro} o1 09

3) Soient trois nombres sur la pile, on veut diviser le plus grand des deux
par 2 et répéter 1'opération jusqu'd ce que 1'on obtienne deux nombres

eégaux.
: LZ BEGIN
2 NDUP > IF SWAP THEN 2 (inverse 1'ordre si le 2e est plus grand)
2 [/ » (divise le plus grand par 2)
2 NDUP =3 (teste s'ils sont &gaux)
END .3/ (s oui: imprime les nombres, sinon continue)
6 4 ZZp
11
12 14 772
3 3

4) Tabule la fonction 1n sin.
: FONXION LN SIN ; »

: TABULE 0.5 | (valeur de départ)
" TABULATION DE LA FONCTION SIN(LN(X)) DE 0.5 A 10.0" CR CR+

BEGIN »

FDUP E. ¥ (imprime X)

FDUP FONXION E .? (imprime F(X))

CR 0.3 F+ (INCREMENT) FDUP 10.0 F>2 (test de fin)

END ;)

TABULE ¢

TABULATION DE LA FONCTION SIN(LN(X)) DE 0.5 A 10.0

. 500000E+00 - .638592E+00
.800000E+00

21 Cos

14

Numeérisé par micromusee.ch

o 5.5 BEGIN...IF...WHILE

Avec ces instructions de répétition, on fait la séquence tant qu'une
condition est vraie.

...BEGIN /condition/ IF /séquence/ WHILE...
EXEMPLES:

1. Calculer la somme des entiers de 1 @ n (n sur la pile)

: SOMME 0 BEGIN OVER 0># (commence avec une somme nulle, teste si n > 0)
IF OVER + SWAP 1 - SWAP: si oui additionne n & T1a somme et dte 1 @ n)
WHILE . DROP ;. recommence...imprime la somme et supprime n

6 SOMME . qui vaut maintenent 0)

21

2) Soustrait 5 au nombre sur la pile et imprime le nombre restant tant
que celui-ci est plus grand que 9.

: S5 BEGIN DUP 97»

IF DUP " RESTE: " . CR¥
5 = WHILE DROP ;3

12 S5 2
RESTE: 12

6 S5/

(rien n'est imprimé vu que le nombre de départ est inférieur & 9).

REMARQUE: dans un BEGIN-END la séquence est toujours exécutée au moins
une fois vu que le test se fait a la fin; tandis qu'avec
BEGIN-IF-WHILE Ta séauence peut ne pas etre exécutée une seule
fois s1 la condition est fausse dés le départ comme dans le
dernier cas de 1'exemple 2.

o 5.6 DO...LOOP et DO... +LOOP

Ces instructions font exécuter une séquence tant que 1'indice spécifié
est plus petit que se valeur maximale. Chaque exécution de la séquence
additionne 1 @ 1'indice ou un nombre quelconque si on utilise +LOOP.
L'indice de départ et sa limite sont initalisés par les deux entiers se
trouvant sur la pile au moment de 1'exécution du DO.

iimax'imin DO /séquence/ LOOPI ou

imax imin DO /séquence/ incr +LOOP
La procédure I dépose sur la pile la valeur actuelle de 1'indice.

EXEMPLES:
1) Ecrire 3 fois "¢a tourne" sur 1'écran.

: ECRIT 31 DO # (T'indice ira de 1 a 3)
" CA TOURNE"™ CR# (impression)

LOOP ;)

ECRIT »

CA_TOURNE

—— . — s e eawr . e e ——

CA_TOURNE

T R - e

CA TOURNE 15

Numeérisé par micromusee.ch

2. Imprimer les nombres entiers de 8 & 15

: ENTIERS 15 8 DO I . LOOP :»
ENTIERSY

89 10 11 12 13 14 15

-M

3) Imprimer une * sur 1'&cran en n€ position, ol n est le nombre sur
la pile.

: XXX 1T.DO ™ ™ poop " *v .
4 XXX»

*

20 XXX

: CCC 10 2 DO I DUP * 2 / XXX CR LOOP ; CCC+

*x

x
%

O 5.7 RESUME DES INSTRUCTIONS CONDITIONNELLES ET REPETITIVES

IF...THEN IF...ELSE...THEN
l’? T ?
52
BEGIN.. . .WHILE
~—*1
__jjj
___i
mn DO...LOOP mn DO... k +LOQP

moow
=

|
I l V\+‘I|
I_*_"_'EJ

16

Numeérisé par micromusee.ch

Toutes ces instructions peuvent 2tre combinées pour obtenir des structures

plus complexes. Par exemple, introduire un DO...LOOP & 1'intérieur de 1la
sequence contrdolée par un BEGIN...END.

On remargquera que les organigrammes précédents ont tous un seul point d'entrée
et un seul point de sortie ce qui permet un bon contrdle de la logique du

programme. I1 est bien entendu que ces différentes structures ne peuvent pas
se chevaucher.

EXEMPLE: ... IF ... BEGIN ...THEN ... END ... est totalement faux.

Par contre, on peut toujours les imbriquer les uns dans les autres.
EXEMPLE:

IF ... BEGIN ... END

ELSE ... IF ... DO ... LOOP
ELSE. «
THEN

THEN

m 6.1 LES VARIABLES

Les variables sont des zones de mémoire de taille et de structure diverses
quil sont repérées par un nom. Dans une variable on peut stocker: un entier,

un réel, un caractére, etc. I1 existe un type de variable pour chaque type
de donnée traitée par le FORTH.

VARIABLES SIMPLES

n INTEGER nom Définit une variable pouvant contenir un entier,
c'est @ dire occupant 1 mot mémoire.

La variable porte le nom indiqué aprés INTEGER et contient
comme valeur initiale le nombre n.

r FLOATING nom Définit une variable de type réel (2 mots) dont 1a
valeur initiale est r.

0 6.2 UTILISATION DES VARIABLES
Les deux opérations de base portant sur les variables sont:

. transférer le contenu du sommet de la pile dans une variable
. prendre le contenu d'une variable et le déposer sur la pile.

L"appel d'une variable se fait comme pour les procédures simplement

en donnant un nom. L'appel d'une variable a pour effet de déposer

sur la pile 1'adresse mémoire de celle-ci; on peut ensuite en utilisant
la procédure adéquate soit amener sur la pile la valeur se trouvant &
cette adresse (c'est-a-dire dans cette variable), soit déposer 3 cette
adresse ce qui se trouve sous le sommet de la pile.

| & Rem : ' o | X
| place 1'adresse au sommet .
| de 1a pile par le mot (16 bits) IZZ]/ S
P;\e. Mem

se trouvant a cette adresse

I
{

|
F& l Remplace 1'adresse au sommet
'J- de 1a pile par les deux mots I l

' |
se trouvant @ 1'adresse et 'I[‘\ ? ‘m-.t FR‘_—_] l | A—iNM
l |
i O

A e e W ey W » - e - —

d 1'adresse+].

Numeérisé par micromusee.ch

Dépose la valeur sous le sommet

de 1a pile @ 1'adresse indiquée .
par le sommet
.:III///,AV X 1
Comme ' maijs avec l.es deux
mots sous le sommet.

comme & , mais sur 1 byte

comme . , mais sur 1 byte

EXEMPLES:

569 INTEGER AA*# (définit une variable entiére contenant 569)
AA” (dépose 1'adresse AA sur la pile)

&# (met sur l1a pile le contenu de AA)

.) (et 1'imprime)

569

33 INTEGER BB ~#

177# (777 sur la pile)

BB~ (adresse BB par dessus)

- ¥ (met le 777 dans BB)

BB & . (on vérifie que BB contient bien 777 maintenant)
777

AA & 31 + # (contenu de AA + 31)

BB . / (dans BB)

BB & .)

600 (nouvelle valeur de BB)

Les variables peuvent &tre utiles Torsqu'il devient difficile de manipuler
la pile parce qu'elle contient trop de données a utiliser en méme temps.

: Ajoute le nombre sous la pile au contenu du mot mémoire
, dont 1'adresse se trouve au sommet de la pile -

AA & .)

569

11 AA +. 4 (additionne 11 & AA)
AA & .}

580

0.0 FLOATING MAXI 0.0 FLOATING PAS

: TAB # (tabulation d'une fonction sinus avec possibilité
' d'indiquer les limites et le pas)
PAS F! MAXI F!“/ (1es deux nombres sur la pile sont le pas et le max.)

BEGIN FDUP MAXI F& F<# (teste si la valeur est plus grande que max.)

[F FDUP E. FDUP SIN E. CR# (si non calcule et imprime)

PAS F& F+ WHILE FDROP ;¥ (incrémentt le nombre sur la pile et continue
.3 0.5 TAB/ |

.0
00000E 00 _0.0000E 00 _ 18

Numeérisé par micromusee.ch

TABLEAUX

N ARRAY nom définit un tableau d'entiers de N é&léments.
Les éléments du tableau ne sont pas initialisés.

N FARRAY nom définit un tableau de réals de N éléments.

o 6.3 UTILISATION DES TABLEAUX

Pour obtenir 1'adresse d'un &lément d'un tableau, i1 faut déposer sur le pile
le numéro de 1'€1ément désiré, puis donner le nom du tableau; on peut ensuite

utiliser les procédures ! et & pour les ARRAYs et F! et F& pour les
FARRAYs.

EXEMPLES:

5 ARRAY TB# (définit un tableau de 5 éléments entiers)

333 1 TB ./ (met 333 dans le premier élément du tableau)

299 4 TB/ (met 299 dans le quatriéme é&l1ément du tableau)

1 TB & .» (imprime le contenu du premier &lément)

333

: TBIMPRIME # procédure pour imprimer tous les é&léments de TB)
5 1 DO boucle de 1 @ 5, car il y a 5 éléments)

E
I TB &/ (prend le contenu du Ie: &lément. I vaut 1, puis 2, 3...)
. LOOP ;. (imprime et continue la boucle)

/77 2 TB . -56 3 TB ! 31888 5 TB ! (place des nombres dans TB)
TBIMPRIME ~

333 77 -56 299 31888

: TB/2 # (procédure pour diviser par 2 tous les éléments de TB)
5 1 D0~
I TB&2/1TB ¥ (divise 1'élément par 2 et remplace par le résultat)
LOOP ; »

TB/2 TBIMPRIME ¥
166 38 -28 149 15944

: IMP100 ~ (imprime les &€léments du tableau qui sont supérieurs a 100)
51 DO I TB & 100 > #
IF I TB & . THEN~#

LOOP ;
IMP100 »

166 149 15944

REMARQUE:

. Si d@ 1"intérieur d'une boucle DO ... LOOP on appelle une procédure,
il n'est pas possible d'utiliser I dans cette procédure. Si on a besoin
de 1'indice de la boucle dans la procédure en question, il faut soit le
déposer dans 1a pile avant d'appeler cette procédure, soit le stocker dans
une variable de facon a ce que la procédure puisse 1'atteindre.

19

Numeérisé par micromusee.ch

EXERCICES:

1) Ecrire une procédure qui calcule le carré d'un nombre, mais seulement
s1 le nombre est plus petit que 1000 en valeur absolue.

2) Méme probléme qu'avant, mais cette fois on imprime un message indiquant
que le nombre n'a pas é&té mis au carré.

3} A partir d'un nombre sur la pile, imprimer Te double dudit nombre, puis
le double du double, et ainsi de suite jusqu'da ce que le dernier nombre
imprimé soi plus grand que 2000.

4) Ecrire une procédure qui trouve tous les diviseurs d'un nombre donné et Tes
imprime (A est diviseur de B, si B modulo A = 0).

5) Ecrire une procédure qui cherche le plus petit @lément d'un AARAY.

6) Ecrire une procédure qui donne 1'indice du premier &lément d'un ARRAY
qui est plus petit que 10 ou imprime un message s'il n'y en a pas.

/) Ecrire une procédure qui classe en ordre croissant les é&léments d'un ARRAY
(tri par échange ou tri pas bulles).

8) Ecrire une procédure qui dessine une fonction sur Te terminal & 1'aide de * .

9) Ecrire des procédures de calcul matriciel: addition de matrices, multiplica-
tion par un scalaire et multiplication matricielle.

(EXEMPLE: créer une matrice 7,4:

28 FLOATING M12
t MT1 1 - SWAP 1 - 4 * + M] ;%
6 2 MTT F& ... 7.283 3 3 MT] F!¥

20

Numeérisé par micromusee.ch

m 7/ TRAITEMENT DES CARACTERES

o 7.1 CODE ASCII DES CARACTERES

A chaque caractére alphanumérique existant correspond un nombre qui est

utilisé pour représenter ce caractére dans la mémoire totalement numérique
de 1'ordinateur. Ce nombre est le code ASCII du caractére

CODES ASCITI (octal)

P 120 |

] Q |

| "4 2 62 B 102 R 122 |

43 3 63 C 103 S 123 |

$ 44 4 64 D 104 T 124 !

% 45 5 65 E 105 U 125 '
& 46 6 66 F 106 V 126

' 47 7 67 G 107 W 127 l
(50 8 70 H 110 X 130
) 9 71 I 117 Y 137
* . 72 J 112 Z 132
= s /73 K 113 133
¢ 74 L 114 134
= 75 M 115 1 135
> 76 N 116 1 136
? 77 0 117 b 137

Ainsi, si on tape sur 1a touche C d'un clavier, la machine recevra le
nombre 3038. Incersément, si 1'ordinateur envoie 1e nombre 1078 ’
1'écran affichera un G .

On remarque que les codes ASCII sont dans un ordre relativement Togique,
c'est-da-dire qui correspond a 1'ordre alphanumérique habituel.

De ce fait, si1 1'on veut trier dans 1'ordre alphabétique une série de carac-
téres, il suffit de trier leurs codes ASCII dans 1'ordre numérique.

WCH imprime le caractére qui est sur la pile

21

Numeérisé par micromusee.ch

8.1 GRAPHISME SUR L'ECRAN SMAKY6

Le software graphique du FORTH est un ensemble de procédures permettant
de dessiner sur 1'écran. |

L &cran peut travailler sous deux modes:

< mode alphanumérique: les coordonnées transmises par 1'ordinateur
sont affichées sous forme de lettres et de chiffres

. mode graphique: les données regues sont considérées comme les coordonnées
d'un point de 1'écran.

Les coordonéées de 1'écran graphique du SMAKY6 s'é&tendent de 0 & 255 en X
et de 0 a 119 en Y.

PROCEDURES GRAPHIQUES

I CMOD | initialise le mode graphique I

(I = 0 effacement [=4 —~—=

I =1 trait normal [= 5 e=—s

[=2 o= I =06 ++++

[=3 reee)

AG-DISP | allume 1'écran graphique et 1'écran alphanumérique
A-DISP | allume 1'écran alphanumérique
G-DISP | allume 1'&cran graphique

NEW initialise un nouveau dessin
(1e prochain point tracé ne sera pas relié au précédent)

0O 8.2 DEFINITION DE L'ESPACE DE TRAVAIL SUR LE TERMINAL

! XMin xmax ymin ymax VIENPORTI détermine la portion de 1'écran

nombres entiers qui va eétre utilisée pour le dessin

EXEMPLE:
Si on ne veut dessiner que dans la moitié gauche, on prendra
0 127 0 119 VIEWPORT

Tout segment dont une extrémité se trouve en dehors des limites ne sera
pas dessiné.

Aprés avoir fini un dessin, on peut redéfinir un nouveau VIEWPORT
ailleurs sur 1'écran.

22

Numeérisé par micromusee.ch

o 8.3 DEFINITION DES COORDONNEES DE L'UTILISATEUR

rxmin rxmax rymin rymax WINDOW définit le systame de coordonnées
propres d@ 1'utilisateur.

L'utilisateur peut choisir le systéme
qui convient le mieux au probléme qu'il
a a traiter.

$"il veut, par exemple, traiter la fonction f: x —4,x3 pour x allant
de -3 d +2, un bon choix serait de prendre

-3. 2,-30. 10, WINDOW

S1 on ne sait pas @ priori quel est 1'expace nécessaire pour contenir le
dessin, on choisir un WINDOW assez grand, quitte a le réduire par la suite.

SCHEMA DE LA RELATION ENTRE VIEWPORT ET WINDOW

ECRAN SMAKY

WINDOW

A tout point exprimé en coordonnées de 1'utilisateur correspond un point P’
sur 1'écran dont les coordonnées sont calculées par les différentes procé-
dures graphiques. L'utilisateur travaille toujours dans ses propres coordon-

nées et c'est le software graphique qui se charge de les convertir en coor-
données sur 1'écran graphique.

DESSIN:
X y DRAW relie par un segment le dernier point tracé avec le point
de coordonnées (Xx,y).
X et y sont des nombres réels représentant les coordonnées
de T'utilisateur du point.
n FARRAY AX a FARRAY AY Relie les points dont les coordonnées sont
] AX a AY n CURVE contenues dans AX pour les x et AY pour les vy,

n indiquant le nombre de points & relier (n ne
doit évidemment pas excéder la dimension des

FARRAYs).
AUTRES PROCEDURES
PAGE efface 1'écran
X y DRAW comme DRAW avec les coordonnées physiques (entiéres)

23

Numeérisé par micromusee.ch

EXEMPLES:

1) Dgssjngr un triangle de base 3 et dont 1'angle inférieur gauche est
S1tué d 1'orgine des coordonnées

PAGE 1 CMOD J

AG-DISP:
0 100 0 50 VIEWPOQRT* (on se donne un espace de dessin carré)
-N]E.wj. -1. 4. WINDOW# (espace utilisateur)

0. O. DRAW 0. 3. DRAW 3. 3. DRAW 0. 0. DRAW G-DISP«

2) Trace la fonction f(x): X exp(-x)sin(x) de -0.5 & 10.

: FONCTION FDUP FMINUS EXP FSWAP SIN F* 3»
. DESSIN PAGE 1 CMOD G-DISP &

0 255 0 119 VIEWPORT¥ (prend tout 1'écran)

-1. 5.5 -0.9 0.4 WINDOW NEW 0.54
NEW -0.54

BEGIN#
FDUP FDUP FONCTION DRAW »

0.1 F+ FDUP 5. F>.
END AG-DISP 3/

DESSIN #

-1. 5.5 -0.9 0.4 WINDOW 0.5 3. 0. 0.4 WINDOW

EXERCICES:

1) Faire un programme qui dessine une étoile
2) Dessiner la fonction x.sin(1/x) de -10. 3 10.

3) Ecrire un programme qui dessine un cercle ou une ellipse centrée a 1'origine.

24

Numeérisé par micromusee.ch

m 9 LA RECURSIVITE ET SON EMPLOI EN FORTH

On dit qu'une fonction est récursive si elle est définie & partir d'elle-
méme.

Par exemple, la fonction factorielle,
Ne = N*(N-T)*(N-2)*...%3%2*]

est telle que N! = N*(N-1) si N> O.

Autrement dit, on a une fonction F définie ainsi

Ra si n=0
is -{n*F(n-l) sinon

0 . 9.1 LA SUITE DE FIBONACCI
Cette suite est définie de 1a maniére suivante:

Chaque nombre de la suite vaut la somme des deux précédents, ce qui
donne 1,1,2,3,5,8,13,21,34,55,...

La fonction F(n) qui donne le n1€Me torme de la suite est définie par:

F(n) =] s1 n est inférieur a 3
F(n-1)+F(n-2) sinon

Nous sommes donc en présence de deux fonctions récursives.
Voyons comment les programmer en FORTH.

: FACTORIELLE (D
DUP 0 = IF (test si N=0)

DROP 1~ (dans ce cas, le résultat est 1)

ELSE # (sinon)
DUP
1 - FACTORIELLE # (calcule (N-1).

@ * (puis N*(N-1)!

THEN 3#

Voyons maintenant ce qui se passe lorsqu'on calcule 4!

PROGRAMME DTLE
FACTORIELLE
(1) 4#0 FACTORIELLE 4
(1) 30 FACTORIELLE 4 3
(1) 2:0 FACTORIELLE 4 3 9
(1) 170 FACTORIELLE 43927
(1) 0=0 1 sur pile et ; 43210
(2) * 3 43211
(2) * 3 4 3 2 1
(2) * 3 43 2
(2) * 3 4 6
FIN 2

Calcul du n1éme terme de la suite:

. FIBANACCI DUP 3 IF DROP 14
ELSE DUP L - FIBANACCI #
SWAP 2 -F FIBONACCI #
+ ¥

THEN 35 ¥ 25

Numeérisé par micromusee.ch

REMARQUE VITALE:

Une fonction récursive doit toujours présenter au moins un cas trivial

c'est-a-dire qu'il doit exister une valeur pour laquelle Te calcul de la
fonction puisse étre fait sans appler une nouvelle fois la procédure.

Par exemple N = } donne immédiatement le résultat 1 pour N. ..
Sinon le processus de calcul serait infini.

0 9.2 PROBLEME DE LA TOUR DE HANOI

Soit trois piquets et une série de disques de rayon décroissant et perces
d'un trou en leur centre empilés sur le ler piquet.

Le jeu consiste @& transférer tous les disques du piquet A sur le piquet B
tout en respectant les deux régles suivantes:

. on ne peut déplacer qu'un disque a@ la fois
. on doit obligatoirement déposer ce disque sur un disque
ayant un rayon supérieur au sien.

Aprés une intense réflexion, on se dit qu'il va falloir par un moyen quel-
congue mettre tous les disques de A sur C sauf le dernier qui ira sur B,
puis ramener les disques de C sur B. Reste a@ savoir comment on va déplacer
les N-1 disques de A vers C. I1 suffit en fait d'utiliser le méme raisonne-
ment que pour A vers B, mais avec un disque de moins. De méme pour C vers B.
On peut alors généraliser cette méthode en considérant une fonction
D(d,a,t,n) ol d est le piquet de départ, a le piquet d'arrivée,
t le piquet de transition et n le nombre de disques a déplacer.

D peut alors se définir ainsi:

si n#l D(d,a,t,n) = D(d,t,;a,n-1) @

D(d,a,t,1) @
D(t,a,d,n-1) O

Le cas trivial se produit pour n=1 (prendre le disque au sommet de d et
le poser sur a).

o 9.3 UTILISATION DES VARIABLES POUR LES PROCEDURES RECURSIVES

S1 une procédure récursive utilise des variables, i1 faut se souvenir
que celles-ci seront modif¥iées & chaque passage dans la procédure.

Supposons qu'une procédure P soit construite de la maniére suivante:
S P aso Bk s F 5o A E suus 1

il y a de fortes chances qu'au moment ol 1'on fait A & on ne retrouve
pas ce qu'on a mis dans A avant d'appeler P car cet appel a4 P a eu bien
entendu pour effet de faire exécuter P donc 1a séqeunce A ‘!

ce qui aura mis quelque chose dans A, détruisant ce qui y était précédem-
ment. Pour remédier @ ce contretemps, i1 faut avant d'appeler P "sauver",
c'est-d-dire déposer le contenu de A sur la pile (en dessous des &léments

utilisés par P), puis au retour reprendre cette valeur de la pile et la
remettre dans A.

26

*%k

Numeérisé par micromusee.ch

10 EDITEUR ET PROCEDURES FORTH NON STANDARD

Les commandes de 1'@diteur sont les mémes que celles du programme SMILE,
sauf pour les commandes relatives d@ la touche (PROGRA).

Pour compiler le programme situé dans le buffer courant, faire (PROGRAQ) C

S'11 y a des fautes de compilation, toutes les procédures qui viennent
d'etre compilées sont enlevées du dictionnaire, et les erreurs sont
indiquées dans le programme par des " ?ERROR".

EXEMPLE;

: ADD + PRINT ; (Ta procédure PRINT n'existe pas)
t ERROR

Pour chercher une erreur, faire (SEARCH) -~ ')}

Lorsqu'une faute est corrigée et que le programme est & nouveau compilé,
les messages d'erreur sont supprimés.

S1 la compilation est correcte, on passe automatiquement en mode inter-
préteur, ce qui permet d'essayer le programme.

Avant de passer au mode interpréteur, la pile est vidée.

PROCEDURES FORTH NON STANDARD

compile le texte se trouvant dans 1'éditeur.
Les erreurs sont indiquées au fur et a@ mesure par ...7
et un coup de buzzer.

Lorsque la compilation est terminée, la pile n'est pas
vidée.

Les procédures compilées sont de toutes facons ajoutées au
dictionnaire, méme s'il y a des fautes.

Appel de 1'éditeur

impressionid'un entier
impression d'un flottant
impression d'un caractere

lecture d'un entier
lecture d'un flottant

variable d'un byte contrdlant 1'impression du message OK.

1 NOOK B. pas de 0K
0 NOOK B. ok

lecture d'un mot.

La longueur est stockée dans ID (byte) et les caractéres suivants
dans WD,WD+1,...,WD+N

X puissance Y (flottants) X>0

27

